THE UNIQUE PHYLOGENETIC DISTRIBUTION OF VAULT PARTICLES REVEALS ITS FUNCTIONAL ROLES

ASFA ALLI SHAIK
(B.TECH, ANNA UNIVERSITY)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF BIOLOGICAL SCIENCES
NATIONAL UNIVERSITY OF SINGAPORE
2013
DECLARATION

I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

__
Asfa Alli Shaik
28 March 2013
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my family for their constant encouragement through all the years of my PhD journey. This thesis would not have been possible but for their continual motivation and understanding. I would like to thank my dad for his immense support through all my decisions and for all his practical advices. I thank my mom for nurturing me all these years and for all her love. I have always admired my mom’s confidence in me and it surely did motivate me through every path of my life. I thank my little sister for maintaining a lively environment at home with all her laughter and gags. I would like to express my heartfelt gratitude to my Grandparents for always being there for me. My grandfather has always remained a man of values and principles and he has been a great inspiration for me. I always look up to him for his blessings which I utmost cherish. I spent a lot of my childhood days with my grandmother and she has been a great company. At this moment I would also like to extend my thankfulness to all my family members for their immense love and care.

I thank my supervisor Chris for giving me an opportunity to work on an exciting project. Through all these years, he has been constantly there to provide me with all the guidance and support that motivated me to work towards my goal. His ambitious projects made me look at science from a different perspective and not merely adhere to the canonical ways. I would also like to thank my collaborator Dr. Cynthia He for accommodating me in her lab and for all her scientific advices.
I would like to thank my lab mate Soumya for her patient guidance and help in sailing me through the wet-lab experiments. I thank Yin-ru for all the helpful inputs and project related discussions. I also thank Sowmya K P, our lab executive for her support. I would like to extend my thanks to all my lab members for keeping the environment lively and fun-filled. I surely had fun during all our get-togethers.

A special thanks to Ladan, from Dr. Cynthia’s lab, for helping me kick-start the *Trypanosoma* project. She has been a wonderful mentor and friend. I learnt a great deal working with her. I also would like to thank Omar for all the useful discussions. I thank all the other members in the lab for their friendly support.

Through the years, I have made some amazing friends. I am deeply indebted to each one of them in some way or the other. Divya, Vasanth and Lokesh, my best friends from undergraduate days, have always been there through thick and thin. I always cherish our wonderful times together. I am truly grateful to Suhas, also my lab mate, for his immense support during the last stages of my PhD. He has been an awesome friend. I would also like to thank Madhuvika, my friend and roommate since the first day I came to NUS for making my days wonderful. I would also like to extend my thankfulness to Srirama, for all his encouragement; Parakalan, for all the entertaining talks; Karthik, for being a good company; Arun, also my lab mate, for being a good friend; Srinath for all the interesting discussions and Shaveta for being an amazing roommate and company.
I would like to express my sincere gratitude to my department, DBS for their funding support through my doctoral research. I would like to thank Priscilla and Reena for their immense help in various admin-related matters.

Last but not least, I would like to extend my heartfelt gratitude to all my teachers who have nurtured me through all these years.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... III

TABLE OF CONTENTS.. VI

SUMMARY... X

LIST OF PUBLICATIONS... XIV

LIST OF FIGURES... XV

LIST OF TABLES... XVII

ABBREVIATIONS.. XVIII

CHAPTER 1 ... 21

INTRODUCTION .. 21

1.1 The Dynamic Vault Shell... 24

1.1.1 Structural Journey – Unveiling the Vault Cage ... 24

1.1.2 Looking inside – Exposing Locations of Minor Vault Constituents 33

1.1.1.1 MVP ... 37

1.1.1.2 VPARP .. 40

1.1.1.3 TEPI ... 43

1.1.1.4 vRNA .. 46

1.2 Cellular Functions Ascribed to Vaults .. 49

1.2.1 Do Vaults Mediate Drug Efflux and Multidrug Resistance? 51

1.2.2 Does Vault Shuttle Cargo In and Out of Nucleus? .. 55

1.2.3 Are Vaults Important for Immune Responses? .. 56

1.2.4 Are Vaults Major Players in Signaling Cascades? ... 59

1.3 ‘Precise Roles’ – Does Vault Have Any? .. 62

1.4 Objectives and Scope of this Work ... 64

CHAPTER 2 ... 66

CHARACTERIZATION OF VAULT IN TRYPSANOSOMA BRUCEI ... 66

2.1 Introduction .. 66

2.1.1 Cellular Architecture ... 68

2.1.1.1 Flagellum ... 69

2.1.1.2 Flagellar Attachment Zone .. 70

2.1.1.3 Cytoskeletal Structure ... 71

2.1.1.4 Other Organelles ... 72

2.1.2 Ancient Single-Cell Eukaryote ... 73

2.1.3 Purpose of this study ... 74

2.2 Materials and Methods ... 76

2.2.1 Cell lines and cell culture .. 76

2.2.2 Plasmid Construction ... 76

2.2.3 Stable and Transient Transfection .. 79

2.2.4 Immunofluorescence Microscopy ... 80

2.2.5 Cell Fractionation ... 81

2.2.6 RNAi Induction .. 82

2.2.7 Immunoblotting Analysis .. 82

2.3 Results .. 84

2.3.1 Identification of three vaults genes in kinetoplastids .. 84

2.3.2 Endogenous expression of MVP1 shows punctate distribution 88

2.3.3 Overexpression causes a majority of TbMVP1 to assemble near the FAZ region 89

2.3.4 TbMVP1 is excluded from flagella and nucleus .. 91

2.3.5 A subset of TbMVP1 is cytoplasmic ... 92

2.3.6 Dynamics of TbMVP1 accumulation along the FAZ region 94

2.3.7 TbMVP1 can assemble to form intact vault particles ... 96

2.3.8 Coiled-coil domain in TbMVP1 is responsible for punctate distribution, but not localization .. 98

2.3.9 Differential subcellular localization of MVP paralogs ... 103

2.3.10 MVP1 is not essential for cell proliferation under normal conditions 107

2.3.11 Mild nutrient phenotype on TbMVP1 knockdown at limited nutrient condition 107

2.3.12 TbMVP1 knockdown interferes with nutrient-stress related cell adhesion 109

vii
2.4 Discussion .. 111

CHAPTER 3 .. 121

UNRAVELING THE EVOLUTIONARY HISTORY OF THE VAULT COMPLEX ... 121
3.1 Introduction ... 121
3.2 Materials and Methods ... 122
 3.2.1 Sequence retrieval .. 122
 3.2.2 Sequence alignment and phylogenetic analysis .. 123
 3.2.3 Essential amino acid analysis ... 124
3.3 Results ... 125
 3.3.1 Unique Phylogenetic Distribution of MVP .. 125
 3.3.1.1 MVP in a Non-Nitrogen-Fixing Cyanobacterium .. 129
 3.3.1.2 MVP Xenologs in Certain Gliding Heterotrophic Bacteria 129
 3.3.2 Evolutionary Origin of MVP and Independent Horizontal Gene Transfer Event into Eukaryotes ... 131
 3.3.3 Divergence of MVP in Opisthokonts ... 139
 3.3.3.1 Evolution of MVP in Deuterostomes ... 139
 3.3.3.2 MVP in Non-Deuterostome Opisthokonts ... 143
 3.3.3.3 Only Lophotrochozoan Protostomes have MVP .. 145
 3.3.4 Co-evolution of VPARP and TEPI with MVP ... 145
 3.3.5 Organisms with MVP are mostly Heterotrophic ... 150
3.4 Discussion ... 155

CHAPTER 4 .. 162

THE MEDIUM IS THE MESSAGE – VAULTS AS NUTRIENT SEQUESTERS ... 162
4.1 Introduction ... 162
4.2 Results ... 165
 4.2.1 Conserved compositional bias of MVP and vRNA .. 165
 4.2.2 MVP is a Unique Protein with High CAI .. 168
 4.2.3 Recycling Vaults – A Reserve of Useful Precursors ... 172
 4.2.3.1 Vault Amino Acids as Substrates for Gluconeogenesis 174
 4.2.3.2 ATP Equivalents Regenerated from a Degraded Vault Complex 175
 4.2.3.3 Vaults as precursors for de novo Nucleotide Biosynthesis 175
 4.2.3.4 Assembling New Proteins from One Vault Particle 176
 4.2.4 Syntenic Conservation of MVP with BCKDK ... 177
 4.2.5 The overlooked vault function – Clues from expression patterns 178
 4.2.5.1 High Expression of Vaults in Nutrient Absorbing/Storage Tissues 179
 4.2.5.2 Starvation and Vaults – Clear Patterns from Dictyostelium 181
 4.2.5.3 Explore the Unexplored – Hidden Clues from Microarray Profiles 184
4.3 Discussion .. 189

CHAPTER 5 .. 195

PROPOSED ROLES OF VAULT THROUGH EVOLUTION ... 195
5.1 Starve the Invader – Save the Cell ... 196
5.2 Establish Amino Acid Gradients Within Cells .. 196
5.3 Mediate Immune Combat ... 198
5.4 A Reliable Store of Amino Acid-Based Neurotransmitters 199
5.5 An Elusive Reserve of Energy and Building Blocks .. 200

CHAPTER 6 .. 204

CONCLUSIONS AND FUTURE DIRECTIONS ... 204

CHAPTER 7 .. 211

REFERENCES .. 211
SUMMARY

Since its discovery in 1986, the function of the 13 million Dalton vault complex has remained perplexing. Approximately three times larger than the ribosome, it is the largest ribonucleoprotein complex within the eukaryotic cell. With an enigmatic barrel-shaped structure and hollow interiors, vaults exhibit an intriguing 39 fold dihedral symmetry. About 70% of the complex is composed of the Major Vault Protein (MVP) which forms the exterior shell structure, while some vaults also harbor minor vault proteins, vault poly-ADP ribose polymerase (VPARP) and telomerase-associated protein 1 (TEPI), along with untranslated vault RNAs. This massive complex is conserved in a wide range of eukaryotes, but absent from model organisms like yeast, Arabidopsis, C. elegans and Drosophila raising speculation about its origin, evolution and function. Various hypotheses - that vaults could be a part of the nucelopore complex, could act as a molecular cargo-carrier, could effectively shuttle out drugs in multidrug resistance cancer cells or could play an important role in signaling cascades and immunity - have been postulated. But the lack of a distinct phenotype in knockout models has hindered researchers from defining a precise function for vaults.

Most studies of vaults have been undertaken in multicellular eukaryotes, including the invertebrate echinoderms. The only single-celled eukaryote in which vaults have been studied is the slime mold Dicytostelium discoideum, which has two copies of the vault gene, and it is well known that that this organism displays a multicellular-like lifestyle. Homologs of MVP are known to be present in other single-celled organisms including Paramecium
and Kinetoplastids, however no experimental studies of vaults in these organisms have been undertaken to date.

The current work focuses on studying vaults in the single-celled eukaryotic parasite Trypanosoma brucei. In parallel, this study also examines the unique evolutionary history of vaults to track its origin, and identity any subtle unifying traits in organisms with vault genes. It is shown that vault genes have undergone paralogous expansion in kinetoplastids into three differentially diverging sequences with distinct cellular localization patterns. The shorter homologue, TbMVP1 is the likely orthologue to MVP from other eukaryotes based on phylogenetic analysis. TbMVP1 occupies the cytoskeletal area close to the trypanosome Flagellar Attachment Zone. RNAi knockouts of TbMVP1 show is not required for T. brucei under normal nutrient conditions, but affects the density of cell growth under nutrient limiting conditions, as shown earlier in Dictyostelium. Thus functional roles for vaults in nutrient accumulation and storage are examined in greater detail.

A broad phylogenetic analysis of the vault particle genes including MVP, VPARP and TEP1 reveals a complex evolutionary pattern and clues to the ancestral roles of vault. It is evident that all eukaryotes and bacteria with vault genes have had an ancestral loss of essential amino acid biosynthesis or nitrogen fixation, and hence are heterotrophic and largely autophagic, including one of the bacterial species. The MVP gene appears to have arisen in an ancient cyanobacterium that lost genes pertaining to nitrogen fixation and acquisition of vaults into distinct clades of heterotrophic eukaryotes and bacterial appears to be the result of multiple events of horizontal transfer. The
observations are consistent with an ancestral function for vaults as a stable amino acid storage complex complementing loss of nitrogen fixation and amino acid biosynthesis.

The efficacy of vault as an amino acid storage polymer was tested using compositional and theoretical biochemical analysis. There is a high ATP and carbohydrate energy equivalent of vault after amino acid recycling. A proposed synthesis-turnover based nutrient absorption function fits well with a number of reported vault expression and turnover patterns published in literature and other high throughput expression data. Key experimental observations associated with vault, including neuronal transport, accumulation in oocytes, and intrinsic immunity, can now be explained by this new proposed functional role of Vault.
LIST OF PUBLICATIONS

1. Asfa Alli Shaik and Christopher W. V. Hogue. Unraveling the Evolutionary History of the Vault Complex
 (To be resubmitted)
2. Asfa Alli Shaik and Christopher W. V. Hogue. The medium is the message: A Consistent Theory for the Function of Vault Complex
 (To be submitted)
3. Asfa Alli Shaik, Ladan Gheiratmand, Cynthia Y. He and Christopher W. V. Hogue. A Role for Vaults in Nutrient Accumulation in *Trypanosoma brucei*
 (Manuscript in preparation)
 (Manuscript in preparation)

Conference Presentations

1. The Society for Molecular Biology and Evolution, 2012 Conference, Dublin, Ireland (June 2012)
2. The 4th Asian Young Researchers Conference on Computational and Omics Biology, Singapore (Dec 2010)
3. The Structural Biology and Functional Genomics Conference, Singapore (Dec 2010)
4. The 14th Biological Sciences Graduate Congress, Bangkok (Dec 2009).
5. The Singapore Symposium on Computational Biology (SYMBIO), Singapore (Sept 2009)
LIST OF FIGURES

FIGURE 1.1 Negative EM of highly structured vaults purified from various eukaryotic species .. 23
FIGURE 1.2 Structure of the vault complex ... 29
FIGURE 1.3 Overall fold of an MVP chain ... 31
FIGURE 1.4 Vault dissociation into two halves .. 32
FIGURE 2.1 Schema showing Trypanosoma brucei cell cycle events 69
FIGURE 2.2 Distribution of MVP homologs across the kinetoplastids 86
FIGURE 2.3 Clustal alignment between the Trypanosoma MVP paralogs 87
FIGURE 2.4 Endogenous expression of YFP-TbMVP1 ... 88
FIGURE 2.5 Partial overlap of TbMVP1 with another FAZ marker, L3B2 90
FIGURE 2.6 TbMVP1 is juxtaposed along the FAZ at all stages of cell cycle 90
FIGURE 2.7 TbMVP1 is excluded from the flagella .. 91
FIGURE 2.8 A subset of TbMVP1 associates with the cytoskeleton 93
FIGURE 2.9 Dynamic accumulation of TbMVP1 near the FAZ region 95
FIGURE 2.10 TbMVP1 can form intact vault particles ... 98
FIGURE 2.11 TbMVP1 has a C-terminal coiled-coil region 100
FIGURE 2.12 Construction of N-terminal or C-terminal truncated proteins 101
FIGURE 2.13 Altered distribution patterns of truncated TbMVP1 103
FIGURE 2.14 Differential localizations of Trypanosoma MVP paralogs 106
FIGURE 2.15 TbMVP1 is important for cell survival at limited-nutrient condition 109
FIGURE 2.16 TbMVP1 interference with nutrient-stress mediated cell-adhesion 111
FIGURE 3.1 Phylogeny of all retrieved MVP homologs across the taxa 128
FIGURE 3.2 Phylogenetic relationships among all the bacterial MVP xenologs 131
FIGURE 3.3 Phylogenetic analysis of MVP genes in protists 134
FIGURE 3.4 Evolutionary origin of MVP ... 135
FIGURE 3.5 Horizontal gene transfer events into eukaryotic protists belonging to Bikonta .. 138
FIGURE 3.6 MVP evolution in deuterostomes ... 142
FIGURE 3.7 Evolutionary relationships between non-deuterostome opisthokonts 144
FIGURE 3.8 Evolutionary origin of VPARP ... 148
FIGURE 3.9 Evolutionary origin of TEP1 ... 150
FIGURE 3.10 Analysis of essential amino acid biosynthetic pathways across all organisms that harbor vault homologs ... 153
FIGURE 3.11 Amino acid synthesis analysis on other eukaryotic protists 154
FIGURE 3.12 Proposed evolutionary model for the origin of vault complex 157
FIGURE 4.1 Conserved compositional bias of MVP protein 171
FIGURE 4.2 Compositional enrichment of vaults through evolution 172
FIGURE 4.3 Comparison of tissue expression of vault ... 180
FIGURE 4.4 Expression of MVP and VPARP in zebrafish intestine 181
FIGURE 4.5 Dynamics of Dicystostelium MVP expression at the transcript and protein levels .. 183
FIGURE 4.6 Changes in transcript profile of MVP expression across various tissues in response to fasting .. 186
FIGURE 4.7 Expression of MVP across various transcriptomic profiles in the GEO database of NCBI .. 187
FIGURE 5.1 Proposed schematic model explaining role of vaults in a generalized cell .. 202
LIST OF TABLES

TABLE 2.1 LIST OF PRIMERS USED FOR ESTABLISHING VARIOUS CONSTRUCTS .. 78
TABLE 4.1 COMPARISON OF U+G+C BIAS IN VRNA AND BASAL GENOME COMPOSITION 167
TABLE 4.2 COMPARISON OF U+G+C BIAS BETWEEN VRNA (ACTUAL) AND VRNA PSEUDOGENES. 168
TABLE 4.3 AMINO ACID COMPOSITIONS OF MVP CHAIN AND STRUCTURED VAULT COMPLEX 174
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>ActA</td>
<td>Actin assembly-inducing protein</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike information criterion</td>
</tr>
<tr>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine Monophosphate</td>
</tr>
<tr>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asp</td>
<td>Aspartate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BCAA</td>
<td>Branched Chain Amino Acids</td>
</tr>
<tr>
<td>BCKDH</td>
<td>Branched Chain Ketoacid Dehydrogenase</td>
</tr>
<tr>
<td>BCKDK</td>
<td>Branched Chain Ketoacid Dehydrogenase Kinase</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian information criterion</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CAI</td>
<td>Codon Adaptation Index</td>
</tr>
<tr>
<td>CDS</td>
<td>Coding Sequences</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic Fibrosis transmembrane conductance regulator</td>
</tr>
<tr>
<td>COP1</td>
<td>Constitutively Photomorphogenic 1</td>
</tr>
<tr>
<td>cpMVP</td>
<td>Cysteine rich peptide-MVP</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cells</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>Erk</td>
<td>Extracellular regulated kinases</td>
</tr>
<tr>
<td>FADH2</td>
<td>Flavin Adenine Dinucleotide</td>
</tr>
<tr>
<td>FAZ</td>
<td>Flagellar Attachment Zone</td>
</tr>
<tr>
<td>FRAP</td>
<td>Fluorescence recovery after photobleaching</td>
</tr>
<tr>
<td>FRET</td>
<td>Fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>GAS</td>
<td>Gamma Activated Sites</td>
</tr>
<tr>
<td>GEO</td>
<td>Gene Expression Omnibus</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>Gln</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine Triphosphate</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's Balanced Salt Solution</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C Virus</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone Deacetylase</td>
</tr>
<tr>
<td>HDF</td>
<td>Human Diploid Fibroblast</td>
</tr>
<tr>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence</td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular Adhesion Molecule</td>
</tr>
<tr>
<td>Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon Regulatory Factor</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus Kinase</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun-N-terminal kinases</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LRP</td>
<td>Lung Resistance Protein</td>
</tr>
<tr>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen Activated Protein Kinase</td>
</tr>
<tr>
<td>MDR1</td>
<td>Multidrug Resistance Protein 1</td>
</tr>
<tr>
<td>MEF</td>
<td>Mouse Embryonic Fibroblasts</td>
</tr>
<tr>
<td>Met</td>
<td>Methionine</td>
</tr>
<tr>
<td>mINT</td>
<td>MVP Interaction Domain</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MRP</td>
<td>Multidrug Resistance-associated Protein</td>
</tr>
<tr>
<td>MTOC</td>
<td>Microtubule Organizing Center</td>
</tr>
<tr>
<td>MtQ</td>
<td>Microtubule Quartet</td>
</tr>
<tr>
<td>MVP</td>
<td>Major Vault Protein</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NCS</td>
<td>Non Crystallographic Symmetry</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbor Joining</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NPC</td>
<td>Nuclear Pore Complex</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly (ADP-ribose) Polymerase</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PFR</td>
<td>ParaFlagellar Rod</td>
</tr>
<tr>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>PRPP</td>
<td>5-phospho-α-D-ribosyl 1-pyrophosphate</td>
</tr>
<tr>
<td>PTEN</td>
<td>Phosphatase and Tensin Homolog</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene difluoride</td>
</tr>
<tr>
<td>RNA</td>
<td>RiboNucleicAcid</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SH2</td>
<td>Src Homology 2</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small Interfering RNA</td>
</tr>
<tr>
<td>SMAD5</td>
<td>Mothers against decapentaplegic homolog 5</td>
</tr>
<tr>
<td>STAT1</td>
<td>Signal Transducer ad Activator of Transcription 1</td>
</tr>
<tr>
<td>TbMVP</td>
<td>Trypanosama brucei MVP</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris Buffered Saline (Tween20)</td>
</tr>
<tr>
<td>TEP1</td>
<td>Telomerase Associated Protein 1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TGFB1</td>
<td>Transforming Growth Factor Beta 1</td>
</tr>
<tr>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>tRNA</td>
<td>transport RNA</td>
</tr>
<tr>
<td>TROVE</td>
<td>Telomerase Ro and Vault Module</td>
</tr>
<tr>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>tTERT</td>
<td>Telomerase Reverse Transcriptase</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated Region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>Val</td>
<td>Valine</td>
</tr>
<tr>
<td>VIT</td>
<td>Vault protein Inter-Alpha-Trypsin domain</td>
</tr>
<tr>
<td>VPARP</td>
<td>Vault PARP</td>
</tr>
<tr>
<td>vRNA</td>
<td>Vault RNA</td>
</tr>
<tr>
<td>VSG</td>
<td>Variable Surface Glycoproteins</td>
</tr>
<tr>
<td>vWA</td>
<td>van Willebrand type A domain</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow Fluorescent Protein</td>
</tr>
<tr>
<td>YPEL4</td>
<td>Yippee like 4 protein</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

While fractionating small subcellular structures including coated vesicles, ribosomes, smooth vesicles and ferritin from liver microsomal extracts using preparative agarose gel electrophoresis, Kedersha and Rome in 1986, identified a discrete fraction that appeared as uniform structures with ovoid morphology under negative staining and transmission electron microscopy (negative EM) (Kedersha and Rome 1986). Under negative EM, these particles formed highly regular unique barrel-shaped structures measuring 65-70 nm and 35-40 nm in dimensions. These unusual subcellular structures were originally observed as contaminants in clathrin-coated vesicle preparations from rat liver tissues (Kedersha et al. 1986). With more than 70% of the structure dominated by a single polypeptide of mass 104 kDa that co-migrates with a 100 kDa coated vesicle-associated polypeptide, it was speculated that these structures could be functionally related to clathrin-coated
vesicles. Though their fenestrated morphology bore some resemblance to those of clathrin-coats, it was established that these purified structures contained no clathrin and indeed were novel structures whose functions were unknown (Kedersha and Rome 1986). With a symmetric morphology reminiscent of the multiple arches of gothic cathedrals, the particles were named ‘Vaults’ (Kedersha and Rome 1986).

Vaults, predominantly a protein complex with no detectable membranes, also harbor a single species of 5.6S RNA along with distinct vault associated proteins, making the complex the largest subcellular ribonucleoprotein complex. Its composition and structure mimics an RNA virus. It is approximately three times the size of a ribosome, yet remained unnoticed until 1986. Even if vaults were found in cell preparations, they could have been mistaken for coated vesicles due to their ovoid morphology (Kedersha and Rome 1986). Conventional stains for EM are highly attracted to charged components of membranes and nucleic acids but show low affinity to protein material, thus particles like vaults are almost invisible using a positive stain. Vaults became apparent only after enrichment and negative staining as shown in Figure 1.1 (Rome et al. 1991). Vault structures of similar size and morphology have been isolated and observed from several eukaryotic species including the invertebrate sea urchins and the evolutionarily distant amoebozoan slime mold Dictyostelium (Hamill and Suprenant 1997; Kedersha et al. 1990). While their wide distribution and conserved morphology is suggestive of an important function for vaults in eukaryotic cell, vaults are found to be conspicuously missing in certain other model eukaryotes including
plants, insects (*Drosophila melanogaster*) and nematodes (*Caenorhabditis elegans*).

Figure 1.1 Negative EM of highly structured vaults purified from various eukaryotic species
(A) Vaults from rat liver; (B) Vaults from bullfrog liver; (C) Vaults from rabbit liver. Scale bar 100 nm. Figure reprinted from permission from (Kedersha et al. 1990) © Kedersha et al. and published by Rockefeller University Press.
1.1 **THE DYNAMIC VAULT SHELL**

With a mass of about 13 million Daltons, vaults represent the largest ribonucleoprotein complex found in eukaryotic cells. Interest in characterizing its components and unveiling its function has been steady since the complex came to limelight. Mammalian vaults are composed of three proteins and also contain several copies of small-untranslated RNA termed the vault RNA (vRNA). The predominant 104 kDa polypeptide, named the Major Vault Protein (MVP), was found to be the same protein as the previously identified Lung Resistance Protein (LRP) that is overexpressed in multidrug resistant cancer models. (Tanaka et al. 2009). Naturally occurring vaults also enclose minor vault proteins, 193 kDa vault poly-ADP ribose polymerase (VPARP) and 240 kDa telomerase-associated protein 1 (TEP1), along with a few copies of untranslated vRNA (vault RNA) that accounts for less than 5% of the entire structure (Kickhoefer et al. 1999; Kickhoefer et al. 1999; Kickhoefer et al. 1993; van Zon et al. 2001).

1.1.1 **Structural Journey – Unveiling the Vault Cage**

Vault has a very unique structure, unlike any previously known macromolecule and efforts on understanding its architecture, structural complexity and assembly have been carried out using various techniques including TEM, cryo-EM, nuclear magnetic resonance (NMR) and X-ray crystallography. Electron micrographs revealed that vault particles display a barrel-shaped structure with an invaginating thin-walled ‘waist’ region and protruding ‘cap’ regions at either end. Studies based on quantitative scanning transmission EM suggested that each vault particle was symmetric and composed of two shell-like complexes joined together at the middle. Half-
vaults were known to appear alongside intact vaults in preparations from *Dictyostelium* (Kedersha et al. 1990). Half-vaults can open into flower-like structures with each flower consisting of eight rectangular ‘petals’ based on observations using freeze-etch microscopy (Kedersha et al. 1991).

Since, *MVP* accounts for more than 70% of the protein mass it was speculated that it constitutes the exterior shell of the particle (Rome et al. 1991). Cryo-EM studies showed that the complex was indeed hollow with density around the central-barrel shaped cavity (Kong et al. 1999). The study also proposed an eightfold-symmetry for the vault complex based on three-dimensional image reconstructions, however at low resolution of 31 Å. Based on stoichiometric analysis, it was suggested that 96 molecules of *MVP* assemble to form the exterior shell of an intact vault complex.

MVP monomers expressed in insect cells that do not have the *MVP* or related minor genes can assemble spontaneously into intact vault complexes, demonstrating that *MVP* is the primary molecule responsible for the structure of vaults (Kong et al. 1999; Stephen et al. 2001). These *MVP*-only structures were found to be hollow and displayed properties similar to that of native vaults. Baculovirus expression in insect cells has since been routinely used in obtaining recombinant vaults in quantity. Thus the *MVP* protein sequence contains all the inherent structural information that governs the multimerization and assembly of the entire vault structure.

Deducing the structure of recombinant vaults with *MVP* N-terminal peptide tags using cryo-EM reconstruction techniques suggested that the internal density within the vault cage varied according to the length and size of the peptide tag. Reconstituting the structure using vaults with N-terminal
cysteine rich tags (cpMVP vaults) at 16-Å resolution also revealed a 48-fold rotational symmetry. Accordingly, it was suggested that 48 copies of MVP constitute each half vault and that two halves interact via non-covalent interactions between the N-terminal regions of MVP monomers at the vault waist region (Mikyas et al. 2004). These cryo-EM reconstructions also identified that the N-terminal region localize within the vault particle with their ends pointing towards the interior of the particle along the midsection (Mikyas et al. 2004). Thus, fusion tags engineered to the N-terminal region of MVP are generally packed within the interior space of the vault particle.

MVP is characterized by short sequence pseudo-repeats of about 55 amino acids occurring at the N-terminal half and also includes a long coiled-coil domain towards the C-terminal end. The coiled-coil domain has been found to be important in the interaction of individual MVP monomers with each other, and hence considered essential for MVP multimerization and vault assembly (van Zon et al. 2002). NMR studies suggested that these sequence repeats constitute structural units that adopt β-sheet-rich-folds. Based on this analysis, it was suggested that the barrel structure was built from at least six repeating structural domains. NMR analysis on a two-domain MVP fragment revealed a three-stranded antiparallel β-sheet with β2-β1-β3 architecture for each domain, with a flexible inter-domain linker region between β1 and β2 and a more structured loop region between β2 and β3 (Kozlov et al. 2006).

The first atomic model for vaults was proposed based on X-ray crystal structure data and computational model-building at 9-Å (Anderson et al. 2007). Like the cryo-EM observations, a cage-like structure with invaginated waist and two protruding caps were proposed for recombinant cpMVP vaults.
Six distinct structural features namely ‘Waist’, ‘Barrel’, ‘Shoulder’, ‘Cap Helices’, ‘Crossover’ and ‘Double-layer cap disk’, were defined. A 48-fold dihedral symmetry was proposed with each MVP monomer folding into 14 domains. However, at the ‘Crossover’ region, which forms the interface between the cap helix and the C-terminal cap disk region, it was suggested that the symmetry gets halved and this 24-fold symmetry is maintained in the C-terminal cap disk region as well. Each half vault, representing an asymmetric unit of the crystal, was proposed to be built from 24 identical pairs of MVP chains A and B, the two chains being different conformations of the MVP protein. The two identical chains were suggested to assemble differently at the cap region, with the type A chains pointing outwards to form the cap region and the type B chains folding inwards, hence shaping to 24-fold symmetry at the cap region. A whole-vault model was assembled as a 41.7 nm x 41.7 nm x 67.5 nm macromolecule.

Several attempts to analyze the crystal structure of vaults followed. In one study, analysis of two dimensional crystals of naturally occurring vaults isolated from murine cells revealed 6-fold dihedral symmetry with vault particles arranged hexagonally and interacting with each other along the central barrel region (Querol-Audí et al. 2005). However, a 3-fold dihedral symmetry was revealed by three dimensional crystals of vaults from monkey cells with flat triangular morphology that diffracted to about 10-Å (Querol-Audí et al. 2005). Concurrent with the reported 8-fold symmetry previously reported, it was suggested that the symmetry of vaults occurs in multiples of 24-fold rotational symmetry.
While most of the studies pointed to a 48-fold dihedral symmetry for the vault particles, a high resolution structure demonstrated that rat liver vaults have an odd 39-fold dihedral symmetry based on crystal analysis at 10-Å resolution (Kato et al. 2008). Based on a tightly packed crystalline lattice with no overlap between individual particles, a dimension of about 40 nm x 40 nm x 70 nm was suggested for each vault complex. On phase refinements by non-crystallographic symmetry (NCS) averaging assuming 2-fold to 48-fold rotational symmetry, it was found that structures exhibiting 3-fold, 13-fold and 39-fold symmetries revealed significantly lower reliability factors (R factors) and higher correlation coefficients. The deduced 39-fold dihedral symmetry, a unique observation for a macromolecular complex, was consistent with previously reported 3-fold symmetry observed in vaults isolated from monkey cells but challenged many earlier studies suggesting an eightfold or 48-fold dihedral symmetry. The detailed contours of the massive complex came to light after the X-ray crystal structure of rat liver vaults was resolved at 3.5-Å (Tanaka et al. 2009). The high resolution structure confirmed the 39-fold dihedral symmetry observed previously and also revealed that vaults assemble from 78 copies of MVP monomers, with 39 MVP chains in each half-vault and not from 96 copies as was believed earlier (Kato et al. 2008). This high resolution structure shows a graceful twist and packing of the coiled-coil domain rather than the strange zig-zag structure in the previous low resolution model. The particle measures about 67 nm from top to the bottom with an internal cavity measuring about 62 nm x 35 nm (Figure 1.2). The cap region measures about 20 nm in diameter.
In contrast to the proposed 14 structural domains, the 3.5-Å structure shows that each MVP chain is comprised of nine structural repeat domains, a shoulder domain, a cap-helix domain and a cap-ring domain (Figure 1.3). End-to-end association of structural repeat domain 1 was found to form the waist region. Except for domains 8 and 9 which assemble from five antiparallel β-strands, the other repeat domains have two antiparallel β-strands, consistent with the NMR sub-structure (Kozlov et al. 2006). The structural domains end at the shoulder domain and assemble as four-stranded α helices on one side.
and four-stranded antiparallel β sheet on the other side, thus folding into a single α/β globular domain. This is followed by the cap-helix domain forming a spiraling 42-turn-long α helix, that terminating as a U-shaped structure at the top of the cap forming the cap-ring domain. The self-assembly of MVP is attributed to 41 interactions that occurred specifically at the cap-helix region between two MVP subunits. The bulk of interaction strength arises from hydrophobic residues that appear at the interface between two helices contributing to specific hydrophobic interactions between two MVP chains. Although the N-terminal associations at the waist regions between two half-vaults were found to be predominantly hydrophilic, the interactions were particularly weaker than the hydrophobic interactions stabilizing the cap structure, thus explaining the appearance of half-vault structures that appear as flower-like structures (Kedersha et al. 1991).
Figure 1.3 Overall fold of an MVP chain
The nine structural folded repeat domains in a single MVP chain from rat are depicted as follows: domain 1 (Met1-Pro55), purple; domain 2 (Arg56-Thr110), pink; domain 3 (Pro111-Ile163), light green; domain 4 (Gln164-Val216), coral; domain 5 (Asp217-Val271), light blue; domain 6 (Pro272-Asp322), magenta; domain 7 (Val323-Gln378), yellow; domain 8 (Ala379-Arg456), red; domain 9 (Val457-Gly519), cyan. The shoulder domain (Pro520-Val646), green; cap-helix domain (Asp647-Leu802), purple; and cap-ring domain (Gly803-Ala845), dark red. From (Tanaka et al. 2009). Reprinted with permission from The American Association for the Advancement of Science.

Though the vault complex exhibits structural stability over a wide range of pH, temperature and cellular conditions, studies have established that the exterior shell is dynamic in nature (Esfandiary et al. 2008; Kedersha et al.)
At low pH conditions (pH 3.4) the complex loosens its associations along the midsection and dissociates into half-vaults (Figure 1.4). In one of these studies, FRET revealed that individual MVP monomers can be exchanged between vault particles. The complex, as a whole, can spontaneously disassemble at the waist region and reassemble back into intact vault particle without compromising its structure, suggestive of a half-vault exchange. The ability of the complex to dissociate into half-vaults may be an important mechanism through which vaults interact with their cellular environment. However, the functional significance of this dynamic behavior is unexplained.

Figure 1.4 Vault dissociation into two halves.

At low pH conditions, as in lysosomes, charge repulsion induces the disassembly of the particle along the waist region to form two half-vaults. The half-vault moiety can open up into a flower like structure as shown in right side of the figure. Figure reprinted with permission from (Querol-Audi et al. 2009).
1.1.2 **Looking inside – Exposing Locations of Minor Vault Constituents**

While *vRNA* does not contribute to the structural integrity of the vault complex, the exact location and roles of the minor vault proteins *VPARP* and *TEPI* was unclear (Kedersha and Rome 1986; Rome et al. 1991). Though the exact stoichiometry of the minor vault proteins associating remains uncertain, it has been estimated that about 4-16 *VPARP* and 2-4 *TEPI* molecules are found in intact vaults (Berger et al. 2008). Expression of recombinant vaults in insect cells shows that *VPARP* and *TEPI*, when co-expressed separately or in combination with *MVP*, are incorporated into intact vault particles, and exhibit independent interaction with *MVP*. One yeast two-hybrid assay did not reveal any interaction between *TEPI* and *MVP* or *VPARP* (van Zon et al. 2002). This hinted that *TEPI* only binds to intact vaults, instead of individual *MVP* chains. The ratio of incorporation of *VPARP* to *TEPI* in recombinant vaults is higher than that in endogenous vaults (Mikyas et al. 2004). Co-expression of *MVP* along with minor vault proteins resulted in formation of recombinant vaults that were more structurally stable and regular.

In spite of an internal cavity large enough to enclose other macromolecules, the vault shell does not accumulate other proteins within its hollow interior excepting the minor vault proteins. The minor vault proteins can accumulate after the assembly of *MVP* is complete, suggesting a dynamic opening of vault exterior shell (Poderycki et al. 2006). Despite this observation, there has been no evidence of non-specific proteins being enclosed within the vault interior.

Cryo-EM images or TEM of negatively stained vault preparations consistently reveal regions of interior density, believed to arise from minor
vault proteins. The production of recombinant vaults in large quantities proved useful in determining the location of \textit{VPARP}, using various single-particle reconstruction techniques. Using differential mapping of cryo-EM reconstructions of various recombinant and tissue-derived vaults, \textit{VPARP} molecules appear tucked within the inner waist surface of vault particles.

A C-terminal sequence fragment of \textit{VPARP} from 1562-1724 aa, termed the \textit{MVP} interaction domain (mINT), was established as its assembly domain with \textit{MVP} as established by a yeast-hybrid screen (Kickhoefer et al. 1999). When various non-vault associated proteins including luciferase, GFP or mCherry were fused with mINT domain, the expressed recombinant vaults successfully enclosed the fusion protein within its hollow cavity (Kickhoefer 2005; Kar et al. 2011). Cryo-EM and single-particle image reconstruction revealed that the recombinant vaults containing mINT fusion proteins exhibit properties similar to those of endogenous vaults, however, display additional density along the central barrel region (Kickhoefer 2005). Interaction studies using various \textit{MVP} and \textit{VPARP} truncated proteins established that N-terminal part of \textit{MVP} could interact with the C-terminal region of \textit{VPARP} containing the mINT domain (van Zon et al. 2002). Thus, the increased density found along the vault barrel region, particularly immediately above and below the waist regions, has been attributed to the interaction between mINT region of \textit{VPARP} and N-termini structured region of \textit{MVP} monomers. The m-INT region interacts with purified recombinant vaults and gains access to its interior surface even in the absence of cell extracts (Poderycki et al. 2006).

NMR experiments further suggested that \textit{VPARP} mINT specifically binds to the exposed folded domains spanning 113-221 aa in \textit{MVP} and that
binding of VPARP does not impose major conformation changes in MVP molecule (Kozlov et al. 2006). Based on electrospray mobility analysis of vault complexes, it was calculated that about 9.5 VPARP molecules could be incorporated into preformed vaults similar to the calculated 8.3 enclosed copies of VPARP arising from co-expression in insect cells.

The second minor vault protein, TEP1, with a notable RNA binding domain, is a constituent of another ribonucleoprotein, the telomerase complex. Since TEP1 is known to interact with telomerase RNA, it was speculated that the vault bound TEP1 was responsible for binding vRNAs. This was confirmed by a yeast three-hybrid assay (Kickhoefer et al. 1999). It was found that TEP1 residues 270-871, which comprise the p80 homology region, bind to both telomerase RNA and vRNAs (Poderycki et al. 2005).

Comparisons of intact vault reconstructions with RNase-treated vaults suggested that vRNAs are contained within the cap region on both ends. Cryo-EM reconstructions of RNase-treated vaults identified a dense region within the vault cap with a proposed 16-fold symmetry (Kong et al. 2000). TEP1 contains 16 WD40 repeats at its C-terminus. The WD40 repeats are known to fold together as organized beta-propeller structures. This was thought to correlate to the 16-fold WD40 repeat of TEP1 and was modeled accordingly along the cap region in close associations with vRNA, confirming the proposed 8-fold symmetry (Kong et al. 2000). However, another study reported 5 additional WD40 repeat regions and proposed that TEP1 may structurally fold as three connected seven-bladed propellers, as the seven-bladed β-propeller structure was a known feature of many WD-repeat containing proteins (Mikyas et al. 2004). Though cryo-EM reconstructions of vaults isolated from
TEP1 −/− mice display overall structural features similar to those from wild type, the cap region density attributed to vRNA was missing. On comparing reconstructions of RNase-treated vaults with *TEP1* −/− vaults, it was apparent that while the 16-fold dense region around the outermost edge was preserved in both reconstructions, regions of less density were identified within an intermediate ring in vaults isolated from *TEP1* −/−. This led to the mapping of *TEP1* to the protruding cap region, as was previously predicted based on structural modeling (Kickhoefer et al. 2001). Differential density mapping of various recombinant and tissue derived vaults, however, revealed very weak differential density within the cap cavity region and thus it was suggested that only a small region of *TEP1* could possibly be involved in interaction with the vault interior (Mikyas et al. 2004).

Recombinant vaults produced by co-expression of various *TEP1* truncations, revealed that only those proteins that retained the p80 homology domain were successfully encaged within vault complexes (Poderycki et al. 2005). Though vRNA is found in close associations with *TEP1*, it does not mediate association of *TEP1* with vaults. Akin to the mINT domain for *VPARP*, the p80 homology domain in *TEP1* facilitates its association with both intact vault complexes and bound vRNA. It is also known that *TEP1* is responsible for stable association of vRNA with vault particles as vaults purified from *TEP1* −/− mice showed only small traces of vRNA (Kickhoefer et al. 2001). Approximately, three- to fivefold-reduced levels of vRNA have been reported in *TEP1* −/− mice, suggestive that stability and accumulation of vRNA within the vault is dependent on *TEP1*. A direct correlation between vRNA stability and *TEP1* was shown by comparing the half-lives of vRNA from wild
type and TEP1−/− mice. The vRNA half-life was reduced to about 0.5-1 hour in TEP1−/− mice as against 4-6 hour in wild type mice. Thus TEP1 acts as a vRNA stabilizing molecule, facilitating its localization within the internal cavity of the vault caps. However the role of this accumulated and stable vRNA within the vault complex remains unclear.

1.1.1 Vault Components – A Perspective

1.1.1.1 MVP

The protein responsible for the cage-like structure of vault, MVP, is a unique and highly conserved protein through evolution. MVP can spontaneously assemble to form intact vault particles without minor vault constituents, implying that MVP primarily exhibits its cellular function as structured vault particles. With equilibrium favoring vault assembly against free MVP monomers, experiments show it takes about 4 hours for newly synthesized MVP chains to assemble into an intact vault particle (Zheng et al. 2005). Pulse-chase experiments have established that MVP assembled as vault particles represent a highly stable macromolecule structures with an apparent half-life of about 3 days (Zheng et al. 2005). The structural similarity of vaults isolated from a wide range of organisms including single-celled slime molds and multicellular metazoans, can be attributed to the conserved sequence of MVP.

The conserved coiled-coil domain at the C-terminal region of MVP makes up the stable cap-helix region in vault particles and mediates interactions between individual MVP monomers, thus enabling vault assembly. Abolishing the coiled-coil domain, either entirely or partly, affects interactions between MVP monomers and disrupts assembly (van Zon et al.
Motif analysis shows at least two putative EF-hands at the N-terminal region of MVP hinting at possible calcium or magnesium binding sites. EF-hands are marked by a loop structure separated by two alpha helices, with residues in the loop involved in calcium binding. Calcium-binding assays have confirmed that the N-terminal region of MVP effectively binds calcium through these EF-hand motifs (Yu et al. 2002). MVP also interacts with PTEN, a tumor suppressor gene involved in the regulation of cell-cycle, in a calcium-dependent manner and also mediates its nuclear translocation (Yu et al. 2002; Minaguchi et al. 2006).

MVP is a widely expressed protein in many different cell types. The high expression of MVP in certain metabolically active cells provides vaults in high copy numbers. Mammalian cells have up to 10^4 vaults and sea urchin oocytes harboring around 10^7 vaults (Kickhoefer et al. 1998; Hamill and Suprenant 1997). Both the mRNA and protein levels of MVP have been found to be elevated in a certain cellular conditions including cancer related multidrug resistance, cell aging, rapidly dividing tumors, cell regeneration, oocyte/embryo development and intracellular infections. Mammalian MVP expression is up-regulated by the cytokine interferon-gamma, displaying increased levels of transcription and translation (Steiner et al. 2006). The proinflammatory cytokine primarily secreted by macrophages, tumor necrosis factor-alpha, negatively regulates expression of MVP at both mRNA and protein levels (Stein et al. 1997). A relatively small increase in transcription level magnifies the protein levels of MVP by many folds, suggestive of high translation efficiency. This phenomenon has been observed in interferon-gamma induced cells and also in actively regenerating cells (Steiner et al. 2002).
This suggests that the expression of MVP may be regulated at the post-transcriptional level and the MVP mRNA is stabilized to allow enhanced translation resulting in elevated protein levels. Paradoxically, the high level of expressed cellular MVP is often accompanied by an increased MVP turnover rate, resulting in rapid degradation of the produced protein. Thus, protein stability seems to be compromised when MVP accumulates in the cell in response to various cellular conditions (Li et al. 1999; Steiner et al. 2006; Sutovsky et al. 2005).

The human MVP gene maps to chromosome position 16p11.2 and the promoter is TATA-less, akin to the murine counterpart. The regulatory human promoter region is marked by several transcription factor binding sites including an inverted CCAAT box, a GATA box, an E box and a GC box element, and is also defined by specific activating or inhibitory regions (Lange et al. 2000; Steiner et al. 2004). The expression of MVP at the transcriptional level involves binding of specific transcription factors during different cellular conditions. Deletion analysis confirmed the GC-box element as a necessary region for basal MVP promoter activation. It has also been reported that the upstream gene region is positively stimulated by binding of several Sp-family transcription factors (Steiner et al. 2004). Additional consensus binding for STAT1 (GAS element), activated upon interferon-gamma induction, has also been found on the core activating sequences in the promoter region. The inhibition of histone deacetylase (HDAC) leads to both transcriptional and translational upregulation of MVP.

It has been established that p53 binds to a response element within the Y-box region in the human MVP promoter region and negatively regulates
vault expression. The binding of the HDAC2-p53 transcriptional repressor complex to the Y-box region has been found to repress the expression of MVP via interaction with YB-1 (Tian et al. 2011). The expression of MVP is also believed to be controlled by a mechanism of alternative splicing. An alternative 3’-splice site in intron 1 results in a longer splice variant within the 5’- untranslated region of MVP mRNA (Lange et al. 2000). The longer variant appears to contain a small upstream open reading frame that represses expression of MVP, both in vitro and in vivo, and hence suggested a role in regulating MVP expression, particularly during malignant transformations (Holzmann et al. 2001). In murine promoters, essential regulatory elements have been mapped to regions of the first exon spanning all the way until the 5’-end of first intron (Mossink et al. 2002).

1.1.1.2 VPARP

Characterization of the minor vault proteins that constitute naturally occurring vaults led to the identification of a 193 kDa protein that interacts with MVP in a yeast two-hybrid screen and also shares 28% identity with the catalytic domain of poly (ADP-ribose) polymerase (Kickhoefer et al. 1999). The novel protein termed the Vault Poly (ADP-ribose) Polymerase was found to catalyze the formation of poly (ADP-ribose) polymers, hence has been regarded as a novel PARP family protein. The PARP family of proteins represents a group of protein-modifying and nucleotide-polymerizing enzymes that play key roles in DNA repair, genomic stability, cell death, transcriptional control and epigenetic regulation. Predominantly nuclear enzymes, they catalyze the attachment and elongation of poly-ADP-ribose units to glutamic
and aspartic residues to target proteins and onto themselves using NAD+ as a substrate (Citarelli et al. 2010).

At least 17 different members of this family, each encoded by different genes yet with overlapping functions, have been documented thus far. Of the distinctly identified members, including PARP-1, PARP-2, PARP-3, PARP-4 (VPARP), tankyrase 1 and tankyrase 2, the nuclear PARP-1 involved in genomic stability remains the best-characterized protein. Poly (ADP-) ribosylation has been implicated in a wide range of cellular conditions including apoptosis, cancer, inflammation, neurodegeneration and brain damage. Evolutionary analysis of the PARP family of proteins suggested that an ancient eukaryotic ancestor harbored at least two PARP genes, one among them being highly similar to PARP-1 functioning in DNA repair (Citarelli et al. 2010). The expansion of PARP encoding genes into a broad family of PARP proteins over evolutionary time underscores their functional significance in diverse cellular processes. Because of its involvement in DNA repair and the observed tumor-suppressor effects of PARP inhibitors, the PARP proteins, particularly PARP-1, have been regarded as a potential target for cancer therapy (Wang et al. 2012; Basu et al. 2012; Lavarone et al. 2013).

The VPARP gene mapping to chromosome 13q11 encodes a multi-domain protein characterized by a PARP domain, BRCT domain, a putative van Willebrand type A domain (vWA) and a vault inter-alpha-trypsin domain (VIT) apart from the mINT domain that mediates interaction with MVP. A subset of total cellular VPARP is vault-associated and co-localizes with MVP, observed as punctate patterns, in the cytoplasm of many cell types. Owing to its dynamic exterior shell, it has been found that vaults incorporate VPARP
within their interior surface in about 1.5 hours (Zheng et al. 2005; Poderycki et al. 2006). This is unlike many PARP proteins which display a predominant nuclear localization. In addition to ribosylating themselves, it has been found that vault-associated VPARP are also capable of ribosylating MVP, albeit with lower ribosylation efficiency compared to other PARP proteins. Whether poly (ADP-) ribosylation affects MVP or the conformation of intact vault complexes is yet to be explored.

A fraction of VPARP is also localized within the nucleus but shows no co-localization with MVP, suggestive of a non-vault associated fraction. A portion of the nuclear VPARP also aligns along the mitotic spindle. In spite of belonging to the PARP family of proteins, which respond to DNA damage, no change in distribution of VPARP was detected following UV-treatment of cells (Kickhoefer et al. 1999). Contrary to the yeast two-hybrid assay, which failed to detect any interactions between VPARP and TEP1, co-immunoprecipitation of TEP1 along with non-vault associated VPARP was observed in cells transfected with both genes. However, this interaction is dubious as no such interactions could be observed between the endogenous minor vault proteins. Overexpressed VPARP, lacking both vWA and mINT domain, is also reported to display telomerase activity. It should be remembered that PARP proteins are responsible for chromosomal stability and also directly control telomere length (d'Adda di Fagagna et al. 1999). In spite of the reported telomerase activity, VPARP−/− mice displayed no significant telomere abnormalities. The length and structure of telomere, telomerase activity and stability was comparable to those of wild-type mice and remained unchanged in knockout mice, thus questioning the reported telomerase activity in VPARP transfected
cells. It has also been established that \textit{VPARP} plays no role in maintaining chromosomal stability or processes related to DNA damage repair. This suggests that vault-associated \textit{VPARP} has distinct roles to play and may not be directly involved in genome stabilization or repair like other conventional PARP proteins. The only reported phenotype for \textit{VPARP} knockout mice is its increased susceptibility to carcinogen induced colon and lung tumorigenesis (Raval-Fernandes et al. 2005).

Wrapping within the interiors of vault significantly increases the stability of \textit{VPARP}, giving it an apparent half-life of at least 40 hours. While evolutionary analyses have revealed existence of \textit{VPARP} based on sequence homology in single-celled \textit{Dictyostelium}, no evidence on its expression or function has been described in any lower or single-celled eukaryotes (Citarelli et al. 2010). For instance, the single-celled protist \textit{Trypanosoma} encodes proteins that display significant homology to \textit{MVP} from higher eukaryotes; however no protein homologous to \textit{VPARP} is encoded in its genome. It should be noted that \textit{VPARP} is not essential for vault assembly and does not influence the incorporation of other minor vault constituents. This hints that incorporation of \textit{VPARP} into vaults is an event that occurred late in evolution. However, the exact functions of \textit{VPARP} being associated with vaults or even otherwise are unknown as yet. Thus, \textit{VPARP} joins the likes of its host complex, the intriguing vault particle, and remains elusive thus far.

\subsection*{1.1.1.3 \textit{TEP1}}

The 240 kDa minor vault protein that appeared along with \textit{VPARP} in vaults isolated from rat liver was found to be identical to the previously
described mammalian telomerase-associated protein, \textit{TEP1} (Harrington et al. 1997; Kickhoefer et al. 1999). The genes towards the ends of a chromosome are inherently maintained intact by addition of new telomeres to the existing ends of chromosome catalyzed by the telomerase ribonucleoprotein. The mammalian homolog to the Tetrahymena p80 telomerase protein, \textit{TEP1} potently interacts with mammalian telomerase RNA and hence is alleged to be a part of the telomerase complex (Harrington et al. 1997). Based on co-purification of Tetrahymena p80 protein with telomerase activity on immunoprecipitation with anti-serum, it was believed that p80 also exhibits significant interaction with the catalytic protein component, the telomerase reverse transcriptase (tTERT). However, interaction studies in Tetrahymena ruled out any association between p80 protein and tTERT, raising speculations on the role of p80 in telomerase activity (Mason et al. 2001). Hence, it was suggested that p80 protein was not a core telomerase specific component and displayed affinity to other RNA as well (Mason et al. 2001).

\textit{TEP1} interact as well as stabilize the association of vRNA within the interior cap region of the vault ribonucleoprotein (Poderycki et al. 2005; Kickhoefer et al. 2001). In spite of the association of \textit{TEP1}, purified vaults neither display telomerase activity nor associate with telomeres (Kickhoefer et al. 1999). \textit{TEP1}^{-/-} embryonic stem cells (ES cells) or mice do not differ significantly in their telomerase activity and distribution or mean length of telomeres from their wild type controls and remain fertile with no developmental defects (Liu et al. 2000). A double-knockout \textit{VPARP}^{-/-} \textit{TEP1}^{-/-} mouse strain displayed no chromosomal abnormalities and appeared normal with unaltered telomerase activity, excluding any functions related to
telomerase catalysis for the minor vault proteins. Consequently, a more structural role of TEP1 in the assembly of the complexes was proposed based on its association with the two unrelated ribonucleoprotein complexes, vaults and telomerase.

Whether TEP1 influenced the assembly of the ribonucleoproteins was studied in a series of experiments using a TEP1−/− knockout model (Kickhoefer et al. 2001; Liu et al. 2004). TEP1 plays no role in telomerase RNA processing or stability and does not influence its association with telomerase complex. This pointed to additional telomerase RNA binding proteins that may aid assembly of telomerase complex, making TEP1 a functionally redundant protein. In contrast, TEP1 in vaults stabilizes vRNA, as evident from reduced half-life of vRNA from TEP1−/− mice (Kickhoefer et al. 2001).

Transcribed from 14q11.2 genomic loci, the TEP1 protein is characterized by several conserved domains including the p80 homology domain that mediates interaction with telomerase RNA and vRNA. Interestingly, the p80 homology domain is also sufficient to allow its interaction with intact vault complexes. Based on domain analysis, an evolutionarily conserved binding domain potentially involved in RNA-binding activity termed the TROVE module was identified in several RNA-interacting proteins including Tetrahymena p80, TEP1 and Ro RNP protein component, Ro 60, that interacts with the Y RNA (Bateman and Kickhoefer 2003). A vWA domain is also commonly present in all these RNA binding proteins. It has been found that removal of the vWA domain interferes with the ability of TEP1 to bind vRNA and it is believed that vWA domain could probably
maintain the conformation of the RNA-binding domain in the TROVE module (Poderycki et al. 2005) Notably, a vWA domain is also present in VPARP.

In spite of the fact that TEP1 can interact with both telomerase and vault RNA, purified vault preparations only include vRNA and no traces of telomerase RNA. These details point to distinct mechanisms for TEP1 in different complexes, binds to either vRNA or telomerase RNA and allowing for specific targeting towards vaults or telomerase complex, respectively. While TEP1 is stably enclosed within the interior surface of vault cap regions, no specific interactions have been established between MVP monomers and TEP1 (Mikyas et al. 2004; Poderycki et al. 2005; van Zon et al. 2002). This emphasizes that the interaction between TEP1 and MVP occurs by virtue of the assembled vault structure cap region, within which TEP1 binds. Finally, WD40 repeat regions are found towards the C-terminus of TEP1 and they have been modeled within the cryo-EM density of the vault cap regions (Kong et al. 2000). Whether vault-associated TEP1 has additional roles to play, apart from stabilizing vRNA within vault interiors, remains ambiguous.

1.1.1.4 vRNA

In addition to the minor vault proteins, vaults isolated from a number of multicellular eukaryotes also featured untranslated vault RNAs that localize within the cap region and constitute about 5% of the total mass of a vault particle (Kedersha and Rome 1986). While in rats and mice only a single vRNA, 141 bases long, has been described, human vaults have been found to accommodate three vRNA sequences that vary from 86-89 bases (Kickhoefer et al. 1993; Kickhoefer et al. 1999). The vRNA genes, named hvg1-3, are arranged as a triplet-repeat structure on chromosome 5q33.1 (van Zon et al.
Based on homology search, a fourth vRNA gene, HVG4 has also been described and it is mapped on to Xp11.2 genomic loci. The vRNA gene is composed of a novel RNA pol III promoter containing two different classes of promoter elements, namely the external 5’flanking type-3 and internal type-2 promoter elements (Vilalta et al. 1994). The two promoter elements function synergistically and mediate transcription by RNA polymerase III (Kickhoefer et al. 1993; Vilalta et al. 1994). The conserved internal promoter elements are marked by one A box and two B boxes (B1 and B2) (Vilalta et al. 1994; Kickhoefer et al. 2003). The region upstream of the transcription start site in all vertebrate vRNA genes includes a TATA box as well as a conserved proximal and distal sequence element defining the external promoter region (Kickhoefer et al. 2003).

The hvg1 vRNA transcript associates with the vault complex (Kickhoefer et al. 2001). A yeast three-hybrid screen demonstrated that vRNAs, hvg1, hvg2 and hvg4 could interact with TEP1, hinting at the association of the varied vRNA within intact vault complexes (Kickhoefer et al. 1999). Expression analysis of various human cell lines demonstrated that hvg1 was much more effectively expressed while hvg2 and hvg3 show low expression levels (Walker et al. 2004). Kickhoefer et al. demonstrated that hvg1 and hvg4 consistently co-purify with vaults as opposed to hvg2 and hvg3 (Kickhoefer et al. 1999). Contrary to this, another study established that hvg4 gene is not expressed in many analyzed cell lines (van Zon et al. 2001). It is interesting to note that the promoter regions of both hvg4 and a pseudo gene described in mouse, mvg2, do not share significant regions of identity with the upstream regions composed of type-3 TATA and other conserved regions.
defining the external promoter elements of \textit{hvg}1-3 (Kickhoefer et al. 2003). Given the importance of upstream promoter elements in transcribing vRNA, the expression and association of \textit{hvg}4 with vaults is highly speculated and \textit{hvg}4 is widely regarded as a pseudo gene (van Zon et al. 2001; Stadler et al. 2009).

It should be noted that a majority of vRNA is cytoplasmic in nature and only a small fraction of the expressed vRNA associates with vaults (van Zon et al. 2001). In spite of the fact that multiple human vRNAs \textit{hvg}1-3 can associate with vault complexes, it has been experimentally determined 80\% of the vRNA in vault complexes is constituted by \textit{hvg}1, making it the predominantly associated species (van Zon et al. 2001). Evolutionary analysis suggested that \textit{hvg}2 and \textit{hvg}3 are genes that arose out of a recent duplication event (Stadler et al. 2009). In multidrug resistant cell lines in which vaults are more often overexpressed, the association of \textit{hvg}3 with vaults increases (van Zon et al. 2001). This highlighted the varied nature of the multiple vRNAs and suggested that they exhibit different levels of affinities to vault particles depending on cellular conditions.

The known vRNA genes in all gnathostomes map to a conserved region linked to the protocadherin-\(\alpha\) cluster encoding a family of synaptic adhesion molecules (Stadler et al. 2009). A novel non-coding RNA termed \textit{CBL-3} displayed elevated expression levels in addition to canonical vRNAs (\textit{hvg}1-3) in human lymphocytes exposed to Epstein-Barr virus infection (Nandy et al. 2009). Interestingly, the \textit{CBL-3} transcript was found to co-purify with vaults and hence was proposed as a novel vault complex-associated RNA. Based on homology search it was later identified as a new vRNA gene that syntenically
maps to the TGFB1-SMAD5 locus in all eutherian mammals as against the canonical locus for most of the described vRNA genes (Stadler et al. 2009).

The vRNAs do not mediate structure assembly of the vault particles as their digestion with ribonucleases still maintains the unique morphology of the vault particle, albeit with less density within the cap regions (Kong et al. 2000; Kickhoefer et al. 2001). Apart from its interaction with TEP1, vRNA has also been found to interact with La RNA-binding protein in-vivo and in-vitro (Kickhoefer et al. 2002). The La phosphoprotein is known to associate with small-untranslated RNAs prior to their incorporation into larger ribonucleoproteins via the polyuridine-rich sequences found at the 3’end of RNAs transcribed by RNA polymerase III (Maraia and Bayfield 2006; Ford et al. 2001). In contrast to its usual transient associations with RNAs, La binds more stably with vRNA as the latter remains unprocessed and retains the polyuridylate tail at the 3’end intact. Since the La RNA-binding protein loosely purifies with vaults, it is believed that it could promote the vRNA-TEP1 interaction within vault complexes (Poderycki et al. 2005). The functional significance of the multiple copies of vRNAs in many eukaryotic species and why they are targeted to the interior of the vault complex remains mysterious thus far.

1.2 CELLULAR FUNCTIONS ASCRIBED TO VAULTS

Vaults were initially believed to diffuse freely through the cytoplasm (van Zon et al. 2006). However, on observations using enhanced-video microscopy and FRAP analysis, vaults were found to move with a velocity of about 10 µm/s, suggestive of fast active transport (Slesina et al. 2006). This
phenomenon showed high coherence with previous reports on fast anterograde and retrograde axonal transport of vaults, along the axons of electric ray, akin to the transport of synaptic vesicles and mitochondria along microtubules (Li et al. 1999). The movement of vaults within the cell is attributed to their association with cytoskeletal elements, particularly microtubules, and the involvement of molecular motors (Kedersha and Rome 1990; van Zon et al. 2006). The co-localization and co-purification of microtubules with MVP have been observed in varied cell types and even after microtubule disassembly, specific interactions between vaults and tubulin dimers/oligomers remain intact (Herrmann et al. 1999; van Zon et al. 2006; Hamill and Suprenant 1997; Slesina et al. 2006; Eichenmüller et al. 2003). It has been observed that about 5-6 vaults can associate with 1 μm-long microtubule, and the binding interaction has been found to occur along the vault cap regions (Eichenmüller et al. 2003). It has been found that microtubule depolymerization, in addition to resulting in slower vault movements, also causes vaults to aggregate into cylindrical dynamic structures termed ‘vault-tubes’ (van Zon et al. 2006; van Zon et al. 2003). Though a number of studies have found vaults to co-localize with actin, a direct interaction between the two molecules has not been described (Kedersha and Rome 1990; Herrmann et al. 1999; Slesina et al. 2006).

In spite of their ubiquitous cytoplasmic distribution, vaults have been found to particularly accumulate along filamentous actin-rich lamellipodia of spreading fibroblasts, stress fibers and cell adhesion sites, neuritic tips, presynaptic compartments, lipid rafts and along growth cones, in response to various cellular signals by virtue of their cytoplasmic transport mechanisms.
The observation of vault’s hollow structure, transported along the microtubule over long distances within the cells, provided an intriguing possibility for function. In a “form follows function” approach, it was hypothesized that vaults acted as molecular cargo-carriers. Vaults began to be regarded as molecular cargo-carriers that shuttle proteins or other molecules within cells. Some assumptions about vault functions are indeed based on the cargo-carrier hypothesis. Are vaults really involved in transporting cargo? Do they have other significant cellular roles to play? Are they really important to cell viability? In the next section, hypotheses about vault functions and their experimental support are discussed.

1.2.1 Do Vaults Mediate Drug Efflux and Multidrug Resistance?

Apart from the multidrug resistance protein (MRP) and P-glycoprotein (MDRI), chemotherapy resistant tumor cells were also found to frequently overexpress a lung resistance-related protein LRP, the expression of which was believed to serve as a marker to predict response in acute myeloid leukemia and ovarian cancer. LRP is in fact MVP (Scheffer et al. 1995). The observation that MVP was overexpressed in a number of cancer models, particularly those displaying multidrug resistance, and that it mapped proximal to MRP positioned at chromosome 16p13.1, raised questions concerning the role of vault expression in drug resistance (Slovak et al. 1995; Kickhoefer et al. 1998; Steiner et al. 2006; Rimsza et al. 1999; Sasaki et al. 2002; Izquierdo et al. 1998; den Boer et al. 1998).
Vaults have been known to be highly expressed in metabolically active cells including tumor cells, epithelial cells of lungs and digestive tracts, regenerating cells, macrophages and dendritic cells and also developing embryo (Hart et al. 1997; Berger et al. 2001; Izquierdo et al. 1996; Pan et al. 2013; Schroeijers et al. 2002; Stewart et al. 2005; Sutovsky et al. 2005). The high expression of MVP in the above-mentioned tissues, which are frequently prone to attack by xenobiotics, suggested that vaults may be involved in protecting the cells from toxic compounds. Elevated levels of MVP persist in tumor cells resistant to a wide spectrum of chemotherapeutic drugs (Berger et al. 2008). HDAC inhibitor driven overexpression of MVP in colon carcinoma cells was reported to correlate with less sensitivity of cells to doxorubicin, etoposide, vincristine and paclitaxel, thus associating MVP with drug sequestration and efflux (Kitazono et al. 1999). It was pointed out that doxorubicin, which is known to accumulate in nucleus, was rapidly effluxed in cells overexpressing MVP and that inhibition of MVP using ribozymes altered drug efflux.

Along with MVP, overexpression of vRNA, particularly hvg1, in glioblastoma and leukemia derived multidrug resistant cell lines and increased incidences of carcinogen induced tumors in VPARP deficient mice seemed to convince researchers all the more about mediation of drug resistance by vaults (Gopinath et al. 2005; Raval-Fernandes et al. 2005). Increase in levels of vaults and vault-associated proteins were constantly being associated with non-P-glycoprotein mediated multidrug resistance. The theory of ‘vault-mediated drug efflux’ became quite popular and prompted several clinical
studies to correlate *MVP* expression to observed drug resistance, heralding vaults as a promising prognostic marker for chemotherapy outcome.

While it seemed convincing that vaults are involved in multidrug resistance and function as drug sequesters, Mossink *et al.* showed that vaults are not involved in mediating resistance to cytostatic agents (Mossink *et al.* 2002). They found that the embryonic stem cells and bone marrow cells derived from *MVP*-knockout mice, which are viable, healthy and display no obvious abnormalities, did not reveal any significant increase in sensitivity to various cytostatic drugs they were exposed to, compared to wild-type control cells. The actions of other multidrug resistance mediators, *MDR1* and *MRP*, were also found to be unaffected on *MVP* depletion, ruling out notions that they function as redundant counterparts. While *MVP* knockdown by siRNA in human bladder cancer cells was shown to result in increased doxorubicin sensitivity and nuclear accumulation, and hence increased cytotoxicity, no difference was found between *MVP*-knockout mice (*MVP-/-*) and wild type with regard to anthracyline doxorubicin response (Herlevsen *et al.* 2007; Mossink *et al.* 2002). These contradictory results cannot be attributed merely to the difference in the *MVP* gene silencing methodologies as lung carcinoma cells subjected to siRNA mediated *MVP* knockdown neither altered intracellular localization of doxorubicin nor showed increase in drug sensitivity or drug export efficacy (Huffman and Corey 2005).

While knockdown/knockout experiments provided controversial results, several other experiments focused on studying whether *MVP* could confer improved resistance to drug-sensitive cells. Drug sensitive SW1573 cells overexpressing *MVP* (fourfold increase in *MVP* levels) display similar
daunorubicin efflux kinetics as SW1573 cells not overexpressing MVP (van Zon et al. 2004). This suggested that increased levels of MVP did not confer any resistance to the drug sensitive cell line. Also, the elevated levels of MVP did not result in vault accumulation near daunorubicin-filled vesicles at nuclear membranes challenging views that vaults were engaged as drug shuttles in pumping out drugs from nucleus. Drug sensitive HeLa cells, induced for MVP overexpression, also did not show any improvements in resistance to the drug and displayed similar drug efflux rates with respect to doxorubicin differently (Huffman and Corey 2005). Even reintroduction of MVP-GFP fusion protein into Mouse Embryonic Fibroblasts (MEF) derived from MVP/- mice (MEFs from MVP/- mice showed no changes in drug efflux rates compared to MEFs from MVP/+ mice) did not confer any additional resistance to daunorubicin compared to MVP/- MEFs, strongly suggesting that vaults do not mediate efflux or sequestration of drugs (van Zon et al. 2004).

With contradictory data regarding vault function in mediating drug resistance, there may be a simple guilt-by-association assumption underlying this assignment of function. Metabolically active cells, more often in a state of stress or undergoing rapid proliferation, have been known to overexpress vaults. Thus, it should be remembered that tumor cells in a broad sense, not only multidrug resistant cells, exhibit elevated MVP levels. Unlike the functions of other known multidrug resistance mediators, no molecular mechanisms explaining how vaults may mediate drug efflux or resistance have survived experimental scrutiny. There has been no study yet that unequivocally confirms drug binding to or being encaged within vault
complexes. Negative results in this regard seems to have falsified the vault
drug efflux hypothesis. The high expression of vaults may merely reflect a
subsequent consequence of multidrug resistance but may not be the actual
causative factor.

1.2.2 Does Vault Shuttle Cargo In and Out of Nucleus?
A subset of vaults, about 5% or less, has been reported to associate
with the nucleus. In sea urchins, vaults were found to be concentrated around
the nucelolus and around the nuclear envelope regions (Hamill and Suprenant
1997). Localization of vaults along the nuclear envelope was also observed in
numerous tumor cells and also in cortical neurons (Kickhoefer et al. 1998;
Slesina et al. 2005; Paspalas et al. 2009). The nuclear envelope is marked by
macromolecular pores formed by the nuclear pore complex (NPC) that
responds to changes in cisternal calcium levels. Since, the size and symmetry
of vaults were comparable to what might actually constitute the central plug of
the NPC, it was proposed that vaults may represent a part of the central mass
(Chugani et al. 1993). Except for a change in FRET signal on varying cisternal
calcium, no direct evidence supports the notion of vaults constituting the
central plug (Dickenson et al. 2007). Instead, vaults suggested to play a role in
the biogenesis of NPCs, thus explaining their association with nuclear
envelope (Vollmar et al. 2009).

Vaults have been found to associate with cytoskeletal elements; in
particular, they exhibit interactions with microtubules along their caps
(Kedersha and Rome 1990; Eichenmüller et al. 2003). They have also been
found to be enriched within cholinergic nerve terminals and exhibit
anterograde and retrograde transport within axons of the electromotor neurons (Herrmann et al. 1996; Li et al. 1999). The claims of a molecular cargo-carrier like function (Szafarski et al. 2011) combined with their juxtaposition to the exterior of the nucleus, led to the hypothesis that vaults may participate in nucleocytoplasmic transport and mediate shuttling of proteins and mRNAs between the nucleus and cytoplasm (Hamill and Suprenant 1997). Yet apart from the distinct vault-associated molecules MVP, VPARP, TEP1 and vRNA, a wider range of cargo has eluded researchers thus far. Co-purification of MVP along with ribosomes in sea urchin embryos was suggestive of vaults functioning as carriers for ribosomes (Hamill and Suprenant 1997). However, the interaction was weak and did not remain intact after vault purification, and vaults do not enclose ribosomes. Despite vaults being implicated in the biogenesis and assembly of NPCs, mouse embryonic fibroblasts lacking MVP genes displayed no significant changes in nuclear import/export kinetics compared to control cells expressing MVP, suggesting no roles for vaults in nuclear trafficking (van Zon et al. 2006). The structure and mechanism of the nuclear pore is now well understood and requires no vaults to function, thus this function appears to have been also falsified.

1.2.3 Are Vaults Important for Immune Responses?

Dendritic cells (DCs) are an integral part of the immune system and function at the interface of innate and adaptive immunity. Functioning as antigen-presenting cells, they are ubiquitously found in tissues that are constantly exposed to external environment and play key roles in initiating primary immune responses. Immature DCs process antigens and on maturation
stimulate antigen specific T cells, eliciting an adaptive immune response. A role for vaults in dendritic cell survival was postulated based on clear upregulation of vaults during maturation of dendritic cells derived from varied sources including blood monocytes, CD34+ mononuclear cells or chronic myeloid leukemia (Schroeijers et al. 2002). Based on overexpression of MVP in reactive monocytosis and chronic myelomonocytic leukemia, MVP as a putative marker of monocytic lineage was also proposed (Sunnaram et al. 2003). Addition of antibodies against vaults in DC cultures severely challenged cell survival and resulted in reduced viability of LPS- or TNF-alpha–matured DCs, underscoring the importance of vaults in immune response. Blockade of MVP also seemed to take a toll on expression of other critical differentiation and maturation markers including CD1a and CD83 and was reported to affect induction of T cell proliferation and subsequent interferon-gamma release (activators of macrophages) from T cells.

Doubts about this role of vault in dendritic cell maturation arose when MVP knockout mice failed to reveal any DC-related immune impairment. The MVP deficient DCs showed no signs of altered surface marker expressions and displayed normal development (Mossink et al. 2003). The antigen uptake, processing and maturation of DCs from MVP deficient mice were comparable to those of control mice. Knockout mice are capable of inducing T cell proliferation and also efficiently elicit T cell mediated immune responses or T cell dependent humoral response, when challenged with varied T cell antigens, suggesting that DC maturation or their migration in vivo does not depend on MVP or vaults (Mossink et al. 2003). With no role for vaults in DC
development, the underlying reason for their high expression in these cells remains unanswered.

MVP is, however clearly an interferon-gamma inducible gene that involves JAK/STAT pathway based interaction of STAT1 within GAS elements in proximal regions of *MVP* promoter. Interestingly, interferon-gamma induction not only led to efficient transcription and translation of *MVP* but also decreased the stability of vaults (Steiner et al. 2006). Of note, overexpression of *MVP* profoundly down regulates expression of interferon-gamma induced expression of ICAM-1, the receptor on respiratory epithelial cells responsible for entry of infectious human rhinovirus, pressing on a role for *MVP* in mediating infection resistance.

Another line of evidence comes from *MVP* expression suppressing hepatitis C virus (HCV) replication and protein synthesis by inducing type-I interferon expression via translocation of interferon regulatory factor IRF7 and NF-κB into the nucleus. It has been found that *MVP* expression is also effectively driven by other viruses, including the Influenza A virus and vesicular stomatitis virus. Apart from *MVP*, intense upregulation of vRNAs up to a 1000 fold on infections by Epstein-Barr virus or Kaposi’s sarcoma virus in human lymphocytes stressed that vaults as an entire structure effectively mediate antiviral response. Thus, vaults are regarded as a virus induced host factor that somehow mediates antiviral responses.

A profound role for *MVP* in reducing bacterial-burden and epithelial cell-mediated resistance to infection by *Pseudomonas aeruginosa* arises from studies conducted on *MVP*-deficient mice. *MVP* knockout mice appeared to display a threefold increase in mortality attributed to reduced bacterial
internalization and increased bacterial accumulation in lung. With the aid of cystic fibrosis transmembrane conductance regulator (CFTR), MVP mediates pathogen clearance by being rapidly recruited to lipid rafts.

The evolutionary recruitment of vault binding proteins on the surface of the invasive bacteria Listeria monocytogenes leads to the accumulation of intact vaults on its surface, which helps this bacteria to evade autophagic recognition. The surface protein internalin InlK binds to vaults and mediates an evasion process of host defenses. This happens without the involvement of ActA (Actin assembly-inducing protein), the primary surface protein that hijacks actin assembly, propelling the bacteria through the mammalian host.

From these lines of experimental evidence, an involvement of vaults in mediating infection resistance is apparent, yet mechanisms remain ambiguous.

1.2.4 Are Vaults Major Players in Signaling Cascades?

The increased expression of MVP in various tumor lines and its unrestrained movement within the cytoplasm implied that MVP could potentially be involved in cellular signaling related to growth and proliferation. Accordingly, it was reported that MVP could possibly regulate the epidermal growth factor (EGFR)-induced MAPK pathway. It has been found that MVP could be tyrosine phosphorylated and hence, establish interaction with many Src homology2 (SH2) domain-containing tyrosine phosphates including SHP-2 and Src kinase (Kolli et al. 2004; Kim et al. 2006). It is interesting to note that SHP-2, a signal enhancer of EGF, plays crucial roles in embryonic development and directly mediates neural stem/progenitor cell differentiation and proliferation (Qu et al. 1999; Ke et al. 2007). In response to EGF, tyrosyl-phosphorylated MVP also associates with
extracellular-regulated kinases (Erks) and the SHP-2 to form a protein complex, suggestive of a cellular scaffold-like function for \textit{MVP} in Erk pathway. However, on EGF stimulation, \textit{MVP}-deficient MEFs displayed no significant change in overall activation of Erks except for a delayed Erk activation response. (Kolli et al. 2004) The transactivation of Elk1, another molecule positively regulated by SHP-2 on EGF stimulation, was found to be reduced by 50% in \textit{MVP}-deficient MEFs compared to those of wild-type MEFs. Based on these observations, \textit{MVP} was believed to modulate or fine-tune the Erk pathway at the level of Ras or even downstream, rather than being a specific activator and/or inhibitor.

\textit{MVP} has also been found to interact with Src in an EGF-mediated manner (Kim et al. 2006). Src is an important signaling molecule and proto-oncogene involved in malignant transformation, controlling various aspects of cell development, migration, synaptic transmission and plasticity, immune response and cell adhesion (Parsons and Parsons 2004). It has been found that Src activity and \textit{MVP} phosphorylation are both important in mediating this interaction. Yet contrary to the observed activation of MAPK pathway by \textit{MVP} interacting with SHP-2 and Erk, \textit{MVP} overexpression was found to reduce EGF-dependent Erk activation in Src overexpressing cells. Purified \textit{MVP} was also reported to quench tyrosine kinase activity of Src in vitro. The impeding effect of \textit{MVP} on MAPK pathway has also been emphasized by another study that suggests that \textit{MVP} interacts with and inhibits YPEL4’s ability to activate Elk-1 (Liang et al. 2010). Of note, YPEL4 a nuclear protein that localizes to the centrosome and nucleolus, is associated with functions related to cell division events (Hosono et al. 2004).
The tumor suppressor gene, p53, has been known to negatively regulate the expression of MVP, both at the mRNA and protein level (Marroni et al. 2003). Interestingly, another study suggested that MVP is up regulated in p53 overexpressing young human diploid fibroblasts (HDFs), contrary to the belief that MVP overexpression arose from defects in p53-related suppression of MVP (An et al. 2009). Senescent HDFs and aged organs also display increased levels of MVP and MVP has been believed to mediate resistance to apoptosis by regulating expression of anti-apoptotic Bcl-2 via the JNK pathway (Ryu et al. 2008; Ryu and Park 2009). A role for MVP in modulating anti-stress response has also been underscored by suppression of c-Jun mediated AP-1 transcriptional activity, possibly via the interaction of MVP with Constitutively Photomorphogenic 1 (COP1) (Yi et al. 2005). Interestingly, COP1, an E3 ubiquitin ligase, is also an important negative regulator of p53 (Dornan et al. 2004). MVP-deficient cells displayed elevated levels of c-Jun and AP-1 transcription activity, highlighting the importance of MVP in cell proliferation, differentiation and apoptosis (Yi et al. 2005).

However, it should be noted that while COP1 is an essential gene for plant and regulates photomorphogenic development, there has been no report of vaults in plants.

It is obvious that MVP is being implicated in a wide variety of signal transduction roles by virtue of its association with several key players in the signaling cascades. Interestingly, most of the reported interactions support functions relating to cell proliferation, survival and tumor progression, including association of vaults with PTEN (Yu et al. 2002). An important role for MVP in signal transduction pertaining to immune responses, particularly in
modulating interferon-gamma mediated JAK/STAT pathway, was suggested when MVP-induced attenuation of STAT1 phosphorylation and subsequent STAT1 translocation to the nucleus was observed (Steiner et al. 2006). The ubiquitous expression of MVP and the unrestrained movement of vaults through the cytoplasm gave credence to the notion that vaults could effectively function in cellular signaling. Though, the interactions of MVP with various key players are being suggested, it should be remembered that purified vault preparations do not reflect the presence of any of these additional interacting players. The observed MVP interactions with various signaling protein/complexes, in most cases, have been identified primarily via yeast two-hybrid assay or immunoprecipitation experiments and hence, may involve association of individual MVP monomers and not the complex as a whole. Even if intact vault complexes could possibly mediate such associations, the transient interactions, most likely, should occur at the periphery and not within the complex. While there may be a role for vault in signaling, it may be late evolved functionality arising from non-specific phosphorylation and not the primary function of the entire complex.

1.3 ‘Precise Roles’ – Does Vault Have Any?

Ever since the vault complex was discovered in 1986, various functional roles have been attributed to the vault complex. But when challenged to describing a clear-cut functional and mechanistic role, the answer remains elusive. Some functions ascribed to vaults are based on appearance and guilt-by-association, and have not been substantiated by experimental evidence, and are often confounded by contradictory experimental evidences. Most of the observations made in vitro could not be
recapitulated *in vivo*. MVP-knockout mice appear completely normal with no defects in development, suggesting it is dispensable.

While the barrel-shaped structure with hollow interiors emphasize a molecular cargo-carrier-like function, vaults purified from a wide variety of eukaryotes reveal no additional cargo other than the conventional vault-associated proteins. If cells depended on vaults for shuttling important cargo like ribosomes or transcription factors through various regions within the cells, particularly into the nucleus, the MVP-knockout mice would have displayed obvious phenotypes pertaining to failures in transcription or translation machinery.

The clearest phenotypes observed, are those pertaining to cell survival during nutritional stress and mediation of antiviral or antibacterial responses during infection resistance. Disruption of vaults in *Dictyostelium* displayed no defects under normal nutrient conditions, but showed reduced survival rates on nutritional stress (Vasu and Rome 1995). Similar observations have been made on MEFs lacking vaults and subjected to growth factor deprivation (Kolli et al. 2004). It should be noted that all cells that display elevated expressions of *MVP* both at the transcript and protein levels are those that are metabolically active and undergo rapid proliferation, including transformed cells, neuronal cells, regenerating cells, developing oocytes or embryos, stressing on the possible roles for vaults pertaining to cellular metabolism and survival (Li et al. 1999; Hamill and Suprenant 1997; Sutovsky et al. 2005; Yoshinari et al. 2009; Izquierdo et al. 1996; Berger et al. 2001; Rao et al. 2009).
1.4 OBJECTIVES AND SCOPE OF THIS WORK

While vaults are dispensable for normal development in eukaryotes a vast amount of cellular resources are invested in translating and constructing a molecular complex of this size. If vaults served no purpose in eukaryotic cellular physiology, they should have been lost through years of evolution. The fact that they have been conserved and are present in a wide range of eukaryotes underscores the importance of vaults as cellular assets that engage in functional roles in a not so evident manner.

The main objective of this thesis is to find the evolutionarily relevant, ancient and perhaps original cellular functional role for the vault complex. With the exception of slime-molds, it should be noted that a majority of vault characterization studies focus on multicellular eukaryotes. Although homologs of MVP have been identified in other single-celled eukaryotes including Paramecium and Kinetoplastids, there has been no study on elucidation of vaults in such organisms. The aims of this thesis are described as follows.

i. Characterize vaults in the evolutionarily distant single-celled eukaryote Trypanosoma brucei to gain insights onto vault origin in kinetoplastids and shed light on its possible ancestral functions.

ii. Chart the evolutionary history of the vault complex to understand its origin and identify common traits unifying all organisms harboring vault genes.

iii. Use phylogenetic information and compositional data of vault sequences to arrive at a putative novel cellular function for vaults and re-analyze the experimental literature in light of the proposed function.
Chapter 2

Characterization of Vault in *Trypanosoma brucei*

2.1 INTRODUCTION

The protozoan parasite *Trypanosoma brucei* is the causative agent of African trypanosomiasis that causes sleeping sickness in humans and Nagana in cattle. Two subspecies of this parasite, the *T. brucei gambienne* and the *T. brucei rhodesiense*, are morphologically indistinguishable parasitic hemoflagellates, and are known to be responsible for chronic and acute infections in humans, respectively. The disease is characterized by two stages, a haemolymphatic stage associated with swelling of lymph nodes and a neurological stage that develops when the parasite crosses the blood-brain barrier. The disease is extremely fatal without medical intervention and the development of an efficient vaccine is challenged by antigenic variation of the surface protein exhibited by this parasite.

The parasite displays a complex life cycle that alternates between the insect (tsetse fly) and the mammalian hosts. The infection in mammals begins when the tsetse fly makes a blood meal and injects metacyclic tryomastigotes
into the bloodstream. The parasite undergoes transformation in the mammalian host into a long slender bloodstream form that starts to multiply in various body fluids including blood and lymph nodes. The proliferative form undergoes a density dependent differentiation into a non-proliferative short stumpy bloodstream form that has the kinetoplast, the mitochondrial genome holding organelle, in the terminal position. When the insect makes a blood meal, these short-stumpy bloodstream forms are ingested and differentiate into procyclic trypomastigotes in the midgut of the insect and start to divide. The procyclic form is morphologically different from the bloodstream form and has an extended and elaborated mitochondrion. In about two weeks, some of these proliferative forms leave the midgut and reach the salivary gland, where they become the epimastigotes and remain attached to the salivary gland. The epimastigotes later multiply and again convert to the metacyclic form that infects the mammalian host, thus completing one cycle of infection.

During its complex life cycle through the mammalian and insect hosts, the extracellular parasite undergoes marked morphological changes and displays different metabolic requirements. The cell typically alternates between stages of proliferation and stages of differentiation as it adapts to the varied environment. The most fascinating feature of these parasites is their ability to alter their surface proteins on differentiation and during infection. In the insect host, the procyclic forms expresses procyclins and as it differentiates into the bloodstream form it expresses variable surface glycoproteins (VSG) that helps evade host immune responses. The parasite has the ability to express a new set of surface glycoproteins in approximately 1 out of every 100 cell divisions, thus challenging the host immune system.
T. brucei contains several single copy organelles including a motile flagellum characterized by an axoneme that is closely associated with a single pair basal body situated at the base of the flagellum responsible for axoneme duplication, a single Golgi and associated ER exit and a kinetoplastid representing the compacted genome of the elongated mitochondrion. Though both the procyclic and bloodstream forms have been studied in vitro, a majority of cytological studies in understanding the parasite have been carried out in the procyclic form (McKean 2003).

2.1.1 **Cellular Architecture**

The complex cellular construction retains the shape and form of the cell relatively unchanged during the course of cell-cycle events. Cytokinesis in Trypanosoma is a highly regulated process that initiates at the anterior end of the cell and continues longitudinally along the posterior end of the cell. The duplication and segregation of organelles during cell division are intricately orchestrated in a spatial and temporal manner, complimented by a well-defined cytoskeletal structure that maintains the shape of the cell (Woodward and Gull 1990; Gull 1999). In this section the architecture of the parasite in light of cell division is described.
2.1.1.1 Flagellum

The most prominent feature of *Trypanosoma* is the single flagellum that plays a significant role in cell morphogenesis events. The flagellum is characterized by a canonical 9+2 microtubule axenome and an extra-axonemal paraflagellar rod (PFR) that can function like a biomechanical spring by transmitting energy derived from axonemal beating (Hughes et al. 2012). The flagellum emerges from the flagellar pocket at the posterior side of the cell and remains attached through the length of the cell body with an overhang at the anterior side of the cell. The flagellar pocket serves as an important player in the parasites’ defense against the host system, serves as the only site of clathrin-mediated endocytosis and exocytosis and is also involved in the
recycling and trafficking of surface proteins of tsetse midgut form, procyclin, and of the mammalian bloodstream form, variable surface glycoprotein (VSG) (Allen et al. 2003; Field and Carrington 2009). Duplication of the basal body and nucleation of the flagellum are the first events that mark the beginning of the cell cycle. As the flagellum exits via the flagellar pocket, events leading to assembly of external PFR and cytoplasmic FAZ components initiate and elongate over the course of the cell division (Kohl et al. 1999). Resistance builds up when the flagellar connector, that marks the distal tip of the new flagellum, reaches the old flagellum and a series of segregation events follow (Davidge et al. 2006). As the organelles duplicate they retain their close association with the new flagellum. It is interesting to note that the flagellum also displays remarkable control over cytoskeletal structures as non-flagellated cells are short, devoid of polarity and do not undergo cytokinesis (Kohl et al. 2003).

2.1.1.2 Flagellar Attachment Zone

In T. brucei the flagellum exits from the flagellar pocket and remains attached through the length of the cell body by a structure termed the Flagellar Attachment Zone (FAZ). It forms a link between the cell body and the flagellum by defining discrete structures between the cell and flagellar membrane (Lacomble et al. 2009). The structure is characterized by a quartet of specialized microtubules (MtQ) and an electron dense protein filament, FAZ filament. The FAZ which originates at the basal bodies plays a very important role in setting the initiation site of the cell cleavage furrow. The axis of cytokinesis cleavage begins at the anterior end of the new FAZ (Robinson et al. 1995). Like in most eukaryotes, the cytokinesis initiation is modulated
by Polo-like kinases that associate with the FAZ region (Li et al. 2010). It is interesting to note that that attachment of flagellum to the cell body and its growth positively regulates assembly of FAZ and a shorter FAZ results in shorter daughter cells (Vaughan et al. 2008; Vaughan 2010). The FAZ along with the growing new flagellum co-ordinates early events including basal body segregation and subsequent events pertaining to other organelles and structures (Absalon et al. 2007).

2.1.1.3 Cytoskeletal Structure

The cytoskeleton in Trypanosoma is defined primarily by microtubules representing the flagellar axenome and those of the subpellicular microtubule corset. Other microtubule based structures include the basal bodies and the intranuclear mitotic spindle. The subpellicular microtubule corset, consisting of up to 100 microtubules, forms a layer of connected microtubules under the cell membrane and helps the parasite retain its shape. It is also worth noting that the inter-microtubule distance remains constant even when the cell volume increases, due to the presence of specific linkers that cross link them with each other and with the plasma membrane (Lacomble et al. 2009; Hemphill et al. 1991). The plus end of the microtubule is placed at the posterior end of the cell and new microtubules intercalate and insert into existing microtubules as cell cycle proceeds (Robinson et al. 1995; Sherwin and Gull 1989). In addition, Trypanosoma also have a set of four microtubules, called the “subpellicular microtubule quartet” (MtQ) that assembles early during the cell division near the FAZ region (Gallo and Precigout 1988). Extending between the basal body, the MtQ traverses around the flagellar pocket and runs beneath the length of the flagellum, parallel to the
FAZ filament. Displaying a polarity opposite to that of the rest of the subpellicular microtubules, with their plus ends at the anterior side of the cell, the MtQ is found in close association with the endoplasmic reticulum (Robinson et al. 1995).

2.1.1.4 Other Organelles

Apart from functioning as a mere motility organelle, the flagellum initiates a series of cell cycle events through its association with various other cell structures. An organelle that highlights its role very early in the cell cycle is the basal body that functions as the microtubule organizing center (MTOC). The maturation of probasal body, situated anterior to the mature basal body, is one of the first signs for a new round of cytokinesis. The basal body defines the proximal end of the flagellum and plays a significant role in the segregation of flagella and is physically linked to the kinetoplast. Microtubule-mediated separation of basal bodies during cell cycle directly controls segregation of kinetoplast (Robinson and Gull 1991). The newly matured basal body also undergoes a rotational movement that mediates the formation of new flagellar pocket (Lacomble et al. 2010).

The *Trypanosoma* is marked by a single Golgi and ER exit site. It is known that duplication of both the Golgi and the ER export site almost occurs at the same time and that the new Golgi appears with some material transferred from the old Golgi (He et al. 2004). The duplication and segregation of the ER exit site and the Golgi complex is mediated by a bi-lobed structure, found near the flagellar pocket juxtaposed to the Golgi (He et al. 2005). The bi-lobed structure predominantly contains a class of calcium
binding proteins called centrins, which are a known component of centrosomes.

In brief, the cell cycle initiates with the duplication of the basal body and nucleation of the flagellum, followed by the flagellar pocket nucleation. The bi-lobe in close association with the FAZ later duplicates as the FAZ extension begins. The elongation of the FAZ and the flagellum closely follows segregation of the bi-lobe. As elongation proceeds, the kinetoplast and the single nucleus divide and segregate, followed by remodeling of the cell membrane and cytokinesis. While the subpellicular microtubules, basal bodies and Golgi are inherited in a semi-conservative fashion, the microtubules comprising the MtQ, FAZ and the flagellum are synthesized de novo in the daughter cell (Farr and Gull 2012; He et al. 2004).

2.1.2 A Single-Celled Eukaryote

Trypanosoma belongs to an evolutionarily distant group of microorganisms called the Kinetoplastida, which represent a deep rooting eukaryote. Apart from the Trypanosomatid parasites, Kinetoplastids also include organisms belonging to the genus Leishmania. These single-celled protists are part of a larger supergroup called the Excavates. Phylogenetic reconstruction of Excavates groups Kinetoplastids and closely related euglenids alongside amoeboflagellate Heterolobosea (Naegleria gruberi) and heterotrophic flagellates jakobids forming a distinct clade. This clade is evolutionarily distinct from other clades represented by mitochondrion lacking flagellates diplomonads and parabasalids, or the oxymonads and Trimastix (Simpson et al. 2006). The kinetoplastids are marked by unique traits including extensive mitochondrial RNA editing, elaborated mitochondrial
architecture and their ability to vary their surface protein coat and evade host response. Their genes are also predominantly arranged in giant polycistronic clusters and more often have duplicated genes that point to adaptive evolution. Genes related to surface antigens, amino acid transporters and development are present in multiple paralogous copies and are positively selected favoring the evolution and survival of the parasite (Emes and Yang 2008).

2.1.3 **Purpose of this study**

A majority of studies in characterizing vaults have been carried out in multicellular eukaryotes, including the invertebrate echinoderms. The only single-celled eukaryotes in which vaults have been studied to some extent are the slime molds *Dictyostelium discoideum*. In spite of being a single celled eukaryote, these protists display a multicellular like lifestyle. The single celled spores grow into unicellular organisms but differentiate to form multicellular fruiting bodies in response to starvation to re-form a smaller population of spores. Unlike the higher eukaryotes which harbor only one MVP ortholog, the purified vaults in slime molds are composed of two paralogs, MVPA and MVPB. The characteristic vault like structure is lost when MVPA gene is disrupted by homologous recombination (Vasu et al. 1993). Though the two MVP genes are not essential for normal cell growth, as the cells remain viable on disrupting both the genes, it is worth noting that the $MVPA^{+/MVPB^{-/}}$ cells reach limited cell density during conditions of nutrient stress (Vasu and Rome 1995).

Through genome sequencing and assembly, it is known that multiple copies of MVP genes are present in both *Leishmania* and *Trypanosoma*. However, there has been no study so far that has been carried out specifically
to characterize the *MVP* paralogs in these kinetoplastids. The kinetoplastids, belonging to the Excavates, are evolutionarily distant from the slime molds, which are closer to multicellular metazoans. Characterizing vaults in kinetoplastids may shed light on the ancestral roles of vaults in single-celled eukaryotes.

The current study focuses on characterizing vaults in one such ancient eukaryotic representative, *Trypanosoma brucei*. Analysis and experiments are pursued towards addressing the following questions.

- How did the multiple paralogs of *MVP* evolve in kinetoplastids?
- Do the *MVP* paralogs in *Trypanosoma* exhibit similar subcellular localization?
- Did interactions between vaults and cytoskeletal structure already evolve in such an ancient eukaryote?
- Are vaults genes essential in Trypanosomes and can these organisms provide clues on the ancestral function of vault?
2.2 MATERIALS AND METHODS

2.2.1 Cell lines and cell culture

The procyclic form *Trypanosoma brucei*, YTat1.1 and 29.13 cell lines were used for the study. The YTat1.1 cell line was grown in Cunninghams’s medium supplemented with 15% heat-inactivated fetal bovine serum (Hyclone) and maintained at 28°C. The 427 cell line 29.13, expressing T7 RNA polymerase and tetracycline repressor was maintained at 28°C in Cunninghams’s medium supplemented with 15% heat inactivated, tetracycline-free fetal bovine serum (Clontech) along with 15 µg/ml G418 and 50 µg/ml hygromycin. The cells were diluted and maintained at exponential growth phase with fresh medium every two days.

2.2.2 Plasmid Construction

The GeneDB database accession number for *Trypanosoma brucei* *TbMVP1* gene is Tb927.5.4460. The full length coding sequence corresponding to 838 amino acids were amplified from *T. brucei* genomic DNA using the primer pairs Hind3*TbMVP1*FP and Nhe1*TbMVP1*RP, digested with HindIII and Nhe1 and cloned into a pXS2 backbone vector that contains YFP coding sequence as a C terminal tag. For inducible overexpression, the full length coding sequence was amplified using Hind3*TbMVP1*FP and Hind3*TbMVP1*RP, single-digested with HindIII and cloned into a modified pLEW100 vector expressing YFP as a C-terminal tag. For expression of truncated proteins, coding regions corresponding to 1-512 amino acids and 513-838 amino acids were amplified with the primer pairs Hind3*TbMVP1*FP/Nter*TbMVP1*Nhe1RP and Cter*TbMVP1*Hind3FP/
Nhe1ThrMVP1RP cloned into the pXS2-based vector for construction of N- and C-terminal truncated TbMVP1, respectively.

Endogenous replacement of one of the TbMVP1 alleles with YFP-TbMVP1 encoding allele was obtained using a double homologous recombination procedure. This was accomplished using a pCR4Blunt-Topo that allows cloning of both upstream and encoding genes regions on either side of regions containing blasticidin resistance gene, tubulin intergenic region and YFP-coding genes. The upstream region of TbMVP1 corresponding to the 5'-untranslated region (5'-UTR) was amplified using 5'utrTbMVP1Pac1F and 5'utrTbMVP1Hind3R and cloned into the pCR4Blunt-Topo vector ahead of the blasticidin resistance gene. A region corresponding to 1000 bp of TbMVP1 was amplified using primer pair TbMVP1BamH1F and 1000-TbMVP1-NsiR and cloned into the same vector downstream of the YFP-coding region. The targeting construct thus established contained both the 5'-UTR and TbMVP1-coding regions. For construction of inducible and inheritable RNAi, suitable RNA fragment was selected using RNAit (http://trypanofan.path.cam.ac.uk/software/RNAit.html), amplified using TbMVP1RnaiXba1F/ TbMVP1RnaiXba1R and cloned into the pZJM vector.

The GeneDB database accession numbers for Trypanosoma brucei TbMVP2 and TbMVP3 genes are Tb927.10.1990 and Tb927.10.6310, respectively. The full-length TbMVP2 gene encoding 863 amino acids and the TbMVP3 gene encoding 862 amino acids were amplified using primer pairs Hind3TbMVP2FP/Nhe1TbMVP2RP and Hind3TbMVP3FP/Nhe1TbMVP3FP. The PCR fragments were digested using HindIII and Nhe1 and cloned into the pXS2-based vector for expression of fusion protein with a C terminal YFP tag.
Table 2.1 List of primers used for establishing various constructs

<table>
<thead>
<tr>
<th>Vector Name</th>
<th>Primer Name</th>
<th>Primer Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TbMVP1_Topo</td>
<td>TbMVP1BamH1F</td>
<td>5’-CG GGA TCC ATG GAT ATC ATA CGA ATT AAA CGT C-3’</td>
</tr>
<tr>
<td></td>
<td>1000-TbMVP1-NsiR</td>
<td>5’-TGC ATG CAT GTA GTG CCT CAT TCT TCC CGA TAG-3’</td>
</tr>
<tr>
<td></td>
<td>5’UTR TbMVP1_Topo</td>
<td>5’-CCT TAA TTA ATT GAA TCT GAT GAG GTG TAG GGA-3’</td>
</tr>
<tr>
<td></td>
<td>5’utr TbMVP1Pac1-F</td>
<td>5’-CCC AAG CTT TCT CGA AAC AGT TGG ACA AAA ATG-3’</td>
</tr>
<tr>
<td></td>
<td>5’utr TbMVP1Hind3R</td>
<td></td>
</tr>
<tr>
<td>TbMVP1_pXS2</td>
<td>Hind3 TbMVP1FP</td>
<td>5’-CCC AAG CTT ATG GAT ATC ATA CGA ATT AAA CG-3’</td>
</tr>
<tr>
<td></td>
<td>Nhe1 TbMVP1RP</td>
<td>5’-CTA GCT AGC TGA CCT TGT CTC GGT TGT TTG-3’</td>
</tr>
<tr>
<td>TbMVP3_pXS2</td>
<td>Hind3 TbMVP3FP</td>
<td>5’-CCC AAG CTT ATG AAT GAT TAT TTA GCG AAT GAG CTG-3’</td>
</tr>
<tr>
<td></td>
<td>Nhe1 TbMVP3FP</td>
<td>5’-CTA GCT AGC CTG CTG CAC ATG ACC AGT C-3’</td>
</tr>
<tr>
<td>TbMVP2_pXS2</td>
<td>Hind3 TbMVP2FP</td>
<td>5’-CCC AAG CTT ATG GTG GAC AAG GAG AAT CAG GTG A-3’</td>
</tr>
<tr>
<td></td>
<td>Nhe1 TbMVP2Rp</td>
<td>5’-CTA GCT AGC TGG CAA CGC GTC GTT CC-3’</td>
</tr>
<tr>
<td>TbMVP1_plew100</td>
<td>Hind3 TbMVP1FP</td>
<td>5’-CCC AAG CTT ATG GAT GAT ATC ATA CGA ATT AAA CG-3’</td>
</tr>
<tr>
<td>Restriction Site</td>
<td>Sequence</td>
<td>Function</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Hind3TbMVP1RP</td>
<td>5'-CCC AAG CTT TGA CTT TGT CTC GGT TGT TTG-3'</td>
<td></td>
</tr>
<tr>
<td>TbMVP1_pZJM</td>
<td>5'-GC TCT AGA TGA ACA CCA CTA CGG GTG AA-3'</td>
<td></td>
</tr>
<tr>
<td>TbMVP1RnaiXba1F</td>
<td>5'-GC TCT AGA AAG AGT CAA AGT CCT CCG CA-3'</td>
<td></td>
</tr>
<tr>
<td>TbMVP1RnaiXba1R</td>
<td>5'-GC TCT AGA TGA ACA CCA CTA CGG GTG AA-3'</td>
<td></td>
</tr>
<tr>
<td>Nter-TbMVP1</td>
<td>5'-CCC AAG CTT ATG AGT GAT ATC ATA CGA ATT AAA CG-3'</td>
<td></td>
</tr>
<tr>
<td>Hind3TbMVP1FP</td>
<td>5'-CCC AAG CTT ATG AGT GAT ATC ATA CGA ATT AAA CG-3'</td>
<td></td>
</tr>
<tr>
<td>NterTbMVP1Nhe1RP</td>
<td>5'-CTA GCT AGC ACC CAA AAA GAG CTG TAG AGC-3'</td>
<td></td>
</tr>
<tr>
<td>Cter-TbMVP1</td>
<td>5'-CCC AAG CTT ATG CCT CGT TTC TCC AGT GAC ACG-3'</td>
<td></td>
</tr>
<tr>
<td>CterTbMVP1Hind3FP</td>
<td>5'-CCC AAG CTT ATG CCT CGT TTC TCC AGT GAC ACG-3'</td>
<td></td>
</tr>
<tr>
<td>Nhe1TbMVP1RP</td>
<td>5'-CTA GCT AGC TGA CCT TGT CTC GGT TGT TTG</td>
<td></td>
</tr>
</tbody>
</table>

The greyed region refers to inclusion of restriction tag for the purpose of cloning.

2.2.3 **Stable and Transient Transfection**

A stables line of *TbMVP1* overexpression was established by linearizing pXS2 construct with NsiI and transfecting into procyclic cells 29.13. Endogenous replacement of *TbMVP1* was achieved by transfecting Ytat.1 cells using linearized pCR4Blunt-Topo vector with NsiI. NotI digested pLEW100 construct was transfected into 29.13 cells for establishing a stable inducible overexpression line. The establishment of inducible *TbMVP1* RNAi involved linearization of the pZJM construct with NotI and transfection into stable line endogenously expressing *YFP-TbMVP1*.
For all stable transfections, cells in exponential growth phase were electroporated with 15 µg of linearized plasmid DNA using Gene Pulser Xcell™ system (Bio-Rad Laboratories) and plated in 96 well plate containing appropriate antibiotics (Blasticidin 10 µg/ml (for pXS2 and pCR4Blunt-Topo vectors) or Phleomycin 5 µg/ml (for pLEW100 vector) or both (for pZJM RNAi). The positive clones were selected and maintained in respective media. For transient transfection 50 µg of plasmid DNA was transfected into 29.13 cells by electroporation.

2.2.4 Immunofluorescence Microscopy

Cells in log phase were spun down and settled onto coverslips for 20 minutes. Intact cells were either fixed and permeabilized in methanol at -20°C for 10 minutes followed by rehydration with PBS for 10 minutes or fixed for 7 minutes with ice cold 4% (w/v) paraformaldehyde in phosphate-buffered saline (PBS) followed by permeabilization for 5 minutes with 1% Triton-X-100 (v/v). For detergent and salt extractions, cells on coverslips were treated with 1% NP-40 (v/v) and 1% NP40 (v/v) + 1M KCl in PBS for 5 minutes followed by fixation with ice cold 4% (w/v) paraformaldehyde in PBS. The coverslips were either directly mounted or prepared for indirect immunofluorescence. For antibody labeling coverslips were blocked with 3% BSA in PBS for 1 hour and then incubated with the indicated primary antibody for 1 hour and washed. Polyclonal anti-GFP (1:200), L3B2 (1:25), anti-CC2D (1:1000), anti-PAR (1:1000) and GRASP (1: 1000) antibodies were used to label YFP, FAZ filament, paraflagellar rod and golgi bodies respectively (Kohl et al. 1999; Zhou et al. 2011; He et al. 2004; Ismach et al. 1989). The fluorescent secondary antibodies (Invitrogen) were then used at
1:2000 dilutions for 1 hour followed by DAPI staining (20 µg/µl) to label DNA for 15 minutes). The coverslips were washed and mounted before visualization. Fixed cells were observed using Zeiss Axio Observer Z1 fluorescence microscope (Carl Zeiss MicroImaging, Germany) with 63x/1.40 oil DIC objective and image acquisition were performed using a CoolSNAP HQ2 CCS camera (Photometrics). The images were processed with ImageJ and Adobe Photoshop Elements 9.

2.2.5 **Cell Fractionation**

Intact vault particles are known to pellet at 100,000g (Kickhoefer et al. 1998). To perform cell fractionation to pellet vaults, 10^9 *TbMVP1* overexpressing cells were used. Cells were pelleted at 3000 RPM for 7 minutes followed by washing twice with cold 10 ml of Buffer A (50 mM Tris-HCl, pH 7.4, 75 mM NaCl, 1.5 mM MgCl$_2$). The cells were then resuspended in 10 ml of Buffer A containing 1% Triton-X-100 (v/v), 1mM DTT and 1X protease inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail Tablets, Roche Applied Science, USA) and incubated for 20 minutes at 4°C with intermittent vortexing. All the extraction procedures detailed below was carried out at 4°C. The extracted cells were pelleted at 8000 RPM for 15 minutes to separate the extracted cytoskeleton and soluble cytoplasmic pool. The cytoskeletal and soluble pool were treated independently to obtain the heavy weight pellet. The soluble cytoplasmic pool was further pelleted at 20,000 g for 20 minutes to remove any cytoskeletal debris and the supernatant (soluble cytoplasmic pool) was used for analysis. The extracted cytoskeleton was washed twice with 10 ml of Buffer A containing 1% Triton-X-100 (v/v), 1mM DTT and 1X protease inhibitors and resuspended in 1 ml of the same
buffer. The extracted cytoskeleton was subjected to sonication (2 seconds pulse for 3 times with 10 seconds rest) at 80% output and spun down for 15 minutes at 13,000 RPM to obtain a supernatant fraction that is enriched in proteins released from the cytoskeletal extract. The obtained cytoskeletal fraction and soluble pool fraction was rotated at 100,000g for 1 hour using a Sw41 Ti swinging bucket rotor to obtain P100-cytoskeletal and P100-soluble fraction, respectively. The supernatants S100-cytoskeletal and S100-soluble were also processed for immunoblotting analysis.

2.2.6 RNAi Induction

The TbMVP1-RNAi knockdown cell line was induced with 10 µg/ml of Tetracycline and monitored for cell proliferation in control and starvation media. The 15% tetracycline free 29.13 culture medium was diluted 10 times in HBSS (137 mM NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 1.3 mM CaCl2, 1mM MgSO4, 4.2 mM NaHCO3, pH 7.3) with glucose (1 g/l) and used as the nutrient limiting medium. 2 x 10^6 cells/ml were maintained in nutrient rich or nutrient limiting medium with tetracycline and monitored for cell proliferation every 24 hours. Uninduced TbMVP1-RNAi cell line was used as a control in both nutrient conditions. Cells in nutrient rich medium were diluted with fresh media when the culture density exceeds 10^7 cells/ml. Only motile cells were counted as viable cells every 24 hours using a hemocytometer.

2.2.7 Immunoblotting Analysis

10% SDS-PAGE gel was used for protein electrophoresis in a Tris-Glycine-SDS running buffer (25mM Tris, 192mM glycine, 0.1% SDS; 1st BASE). A 3x loading buffer (150mM Tris-HCl, 6% SDS, 30% Glycerol, 3%
β-Mercaptoethanol, 37.5mM EDTA, 0.06% Bromophenol Blue, pH 6.8) was
used for sample preparation. The proteins were electrophoresed at a constant
voltage of 100v. Precision Plus Protein Dual Color Standards ((Bio-Rad,
USA) was used as a marker. For immunoblotting, the Polyvinylidene
difluoride (PVDF) membrane (Bio-Rad, USA) was activated with absolute
methanol, rinsed with transfer buffer (0.3% Tris, 1.45% glycine and 20%
methanol) and set for transfer at 70v for 1 hour at 4°C. After transfer, the
membrane was blocked with 5% skimmed milk in TBST (0.1% Tween-
20,10mM Tris-HCl, 150mM NaCl, pH7.6) for at least 1 hour at room
temperature with shaking. The membrane was then incubated with primary
antibody (Anti-GFP) at a dilution of 1: 500 overnight at with gentle rocking.
After washing for 3 times with TBST, the membrane was transferred to
After blocking, membrane was incubated with primary antibody diluted to the
desired HRP (Horseradish Peroxidase)-conjugated secondary antibody at a
dilution of 1:5000 for 1 hour. The membrane was given a final wash with
TBST before the substrate solution from SuperSignal® West Dura Extended
Duration Substrate Kit (Thermo Scientific, USA) was added. ImageQuant
LAS 4000 (GE Healthcare, UK) was used to scan the membrane and acquire
the images.
2.3 RESULTS

2.3.1 Identification of three vaults genes in kinetoplastids

To identify orthologs of MVP in kinetoplastids, a protein BLAST search was performed using the *Dictyostelium* MVP sequence as query. The redundant sequences were removed and a phylogenetic tree was constructed (Figure 2.2). Kinetoplastids evolved three different MVP homologs. Based on the trees it is evident that MVP originated in the common ancestor of kinetoplastids and underwent duplication events to give rise to differentially diverging paralogs prior to speciation events separating Leishmania and Trypanosomes. The sequence with the short branch length likely represents the true MVP ortholog and is designated as MVP1.

In *Trypanosoma brucei* the three homologs are identified as *TbMVP1*, *TbMVP2* and *TbMVP3* (annotated as Tb927.5.4460, Tb927.10.1990 and Tb927.10.6310 respectively, in GeneDB). The *TbMVP1* is an 838 amino-acid protein with a predicted molecular weight of 94.1 kDa and is closer in sequence similarity to MVP orthologs described in other eukaryotes. *TbMVP2* is an 863 amino acid protein (95 kDa) that has diverged considerably from the short-branching *TbMVP1* over the years of evolution. *TbMVP3* is an 862 amino acid protein (96.2 kDa), but is significantly different from the 863 amino acid *TbMVP2* protein. An alignment between the three homologs is shown in Figure 2.3. Interestingly, while *TbMVP1* maps to chromosome 5, both *TbMVP2* and *TbMVP3* maps to chromosome 10, hinting at a possible tandem duplication event. It is also worth noting that the shorter homolog in all identified *Leishmania* species also map to chromosome 5. Hence, it could
be deduced that the \textit{MVP} gene originated in a kinetoplastid ancestor as a single copy gene and later duplicated to give rise to multiple paralogs.

Vaults purified from multicellular eukaryotes also have minor vault proteins, \textit{VPARP} and \textit{TEP1} in addition to small untranslated vRNA. Protein BLAST search based on human \textit{VPARP} sequence failed to identify any orthologs in kinetoplastid genomes. However, potential homologs of \textit{TEP1} proteins from \textit{Trypanosoma brucei} (but not in \textit{Leishmania}) were identified using a human \textit{TEP1} ortholog as query. However, pair wise alignment of the identified \textit{TEP1} homolog with human \textit{TEP1} revealed poor conservation through the length of the sequence (detailed in 3.3.4). It is known that \textit{TEP1}, in addition to interacting with vault complex, also associates with Telomerase RNA complex. In the vault complex, \textit{TEP1} is known to stabilize the associated vRNA. However, no homologs of vRNA have been identified in kinetoplastids. Hence, it seems unlikely that \textit{TEP1} forms a stable association with vaults in kinetoplastids.
Figure 2.2 Distribution of MVP homologs across the Kinetoplastids

The tree represents the topology of MVP estimated through the Neighbor Joining method. Numbers indicate the bootstrap support (maximum 100) based on 1000 bootstrap iterations. MVP protein sequences were aligned using MUSCLE. Branch lengths are proportional to the number of sequence substitutions. The true MVP ortholog in kinetoplastids is designated as MVP1. The longing branching paralogs are marked as MVP2 and MVP3.
Figure 2.3 Clustal alignment between the *Trypanosoma* MVP paralogs
2.3.2 **Endogenous expression of MVP1 shows punctate distribution**

To identify the subcellular distribution of *TbMVP1*, a stable line expressing YFP tagged *TbMVP1* from one endogenous allele was generated by homologous replacement. The YFP tag was fused at the N terminus and hence, is expected to be enclosed within intact vault complexes. The production of *YFP-TbMVP1* protein of the correct molecular weight was verified by Western blotting. The distribution of epitope tagged *TbMVP1* was followed at all stages of *Trypanosoma* life cycle. It was observed that *TbMVP1* displayed punctate distribution through the cytoplasm but was excluded from the nucleus and kinetoplastid regions (Figure 2.4). The stable cell line was also subjected to indirect immunofluorescence with anti-GFP to confirm the expression of properly folded YFP. Previous studies with GFP tagged vaults in mammalian cells have also shown similar punctate distributions (Kickhoefer 2005). However, the endogenous expression level was faint under immunofluorescence and hence, a stable cell line overexpressing *TbMVP1* was used.

![Figure 2.4 Endogenous expression of YFP-TbMVP1](image)

Figure 2.4 Endogenous expression of YFP-TbMVP1

Cells stably expressing *TbMVP1* tagged with YFP were fixed with methanol and viewed under fluorescence microscope, either directly or indirectly using anti-GFP. *TbMVP1* shows a clear punctate patterning throughout the cytoplasm and is excluded from the nucleus. Scale bar, 2µm
2.3.3 Overexpression causes a majority of *TbMVP1* to assemble near the FAZ region

The full length *TbMVP1* coding region was fused upstream of YFP to construct the *TbMVP1*-YFP overexpression vector. The vector was transiently transfected into Ytat cells and observed for immunofluorescence. *TbMVP1* was observed as very bright puncta, preferentially distributed along the FAZ region. While the puncta could also be observed in the cytoplasm, the signal from the FAZ associated *TbMVP1* was very bright that the cytoplasmic puncta could not be observed clearly, except with very high exposure time. The targeting of *TbMVP1* to the FAZ region was confirmed with two different vectors – i) pXS2 based fusion vector with C terminal YFP tag for constitutive overexpression and ii) modified plew100 fusion vector with C terminal YFP fusion tag for tetracycline inducible overexpression. The vectors were individually transfected into procyclic 29.13 cells and two different stable lines were established. Immunofluorescence confirmed that *TbMVP1* localizes close to the FAZ region on overexpression.

To confirm the accumulation of *TbMVP1* along the FAZ region, dual labeling with antibodies that specifically mark the FAZ region was performed. The monoclonal antibody L3B2 specifically targets the FAZ structure in the cell body side by labeling the FAZ filament protein FAZ1 (Kohl et al. 1999). Indirect immunofluorescence (IF) using L3B2 confirmed the presence of *TbMVP1* in close association with FAZ. IF was also conducted with another marker anti-CC2D that marks the FAZ filament and FAZ juxtaposed ER (Zhou et al. 2011). It was observed that *TbMVP1* partially co-localizes with
the FAZ region in all stages of cell cycle as can be seen in Figure 2.5 and Figure 2.6.

![Figure 2.5: TbMVP1 is juxtaposed along the FAZ at all stages of cell cycle](image)

A coiled-coil and C2 domain containing protein (CC2D) that specifically localizes to the FAZ is used as a marker. The DAPI staining clearly marks small structures corresponding to kinetoplasts and larger structures corresponding to nucleus. The kinetoplast divides earlier than the nucleus and hence serves as a reliable marker for cell division. 1K1N, 2K1N and 2K2N represents the various stages of cell cycle.

![Figure 2.6: Partial overlap of TbMVP1 with another FAZ marker, L3B2](image)

TbMVP1-YFP is seen as punctate patterning near the FAZ region. The Merge+DIC image clearly shows the exclusion of *TbMVP1* from the flagella extending from the cell body at the anterior tip. The cytoplasmic pool of *TbMVP1* is visible as faint puncta throughout the cell body. Scale bar, 2 µm.
2.3.4 \textit{TbMVP1 is excluded from flagella and nucleus}

While \textit{TbMVP1} was observed all along the length of the parasite from the anterior to the posterior cell body, whether \textit{TbMVP1} could also associate in parts with the single flagellum of \textit{Trypanosoma} was examined. Indirect immunofluorescence was performed on methanol fixed \textit{TbMVP1-YFP} overexpression stable line using anti-PAR, an antibody that labels the paraflagellar rod and hence, the flagellum. It was observed that \textit{TbMVP1} was specifically excluded from the flagella but was found only within the cell body (Figure 2.7). \textit{TbMVP1} signal was completely missing in the anterior tip detached from the cell body and all through the length of the flagella. This confirms that \textit{TbMVP1} is not a flagellar protein.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure27.png}
\caption{\textit{TbMVP1} is excluded from the flagella}
\textit{TbMVP1} overexpressing cells were fixed methanol and labeled for flagella using the anti-PAR antibody that specifically marks the paraflagellar rods. \textit{TbMVP1} clearly runs along the flagella but never overlaps through the length of the cell. The Merge image clearly shows extension of labeling for flagella surpassing the expression of \textit{TbMVP1} towards the anterior end.}
\end{figure}
2.3.5 **A subset of TbMVP1 is cytoplasmic**

Vaults have been known previously to interact with cytoskeletal elements and sea urchin vaults have been known to co-purify with microtubules. The *Trypanosoma* are characterized by a complex array of cytoplasmic subpellicular microtubule corset under the plasma membranes that helps in retaining the cell shape and remains intact through the complex life cycle. The *Trypanosoma* cytoskeleton being highly cross-linked can be isolated in an intact fashion by a detergent-based extraction procedure. To examine, if the MVP ortholog in *Trypanosoma* can also associate with cytoskeleton, the stable line overexpressing *TbMVP1* was detergent extracted with 1% Triton in PEM to remove the soluble cytoplasmic pool and retain only the detergent resistant cytoskeletal matter comprising subpellicular microtubules, flagellar axenome, microtubule quartet and other microtubules associated structures. The extracted cytoskeleton was fixed and analyzed for immunofluorescence (Figure 2.8 B). It was observed that *TbMVP1* that localized near the FAZ region was still retained in the extracted cytoskeleton; however, the faint puncta observed throughout cytoplasm in intact cells was lost entirely. This confirms that a subset of *TbMVP1* in *Trypanosoma* is cytoskeleton associated while others remain in the soluble pool. Vaults have been observed to move along the microtubules, possibly with the help of molecular motors (van Zon et al. 2006). The strong association of *TbMVP1* with the cytoskeleton might suggest movement of vault complexes along the microtubules in the FAZ region. In *Trypanosoma*, the core cytoskeleton comprising the microtubule quartet and the flagellar axenome remains intact after treatment with 1M NaCl + 1% Triton treatment. To ascertain if *TbMVP1* could represent a part of the core cytoskeleton, the cells were extracted with
salt and detergent for 1 minute followed by fixation and viewing under fluorescence microscope. No signal was detected after the salt treatment suggesting that *TbMVP1* does not associate with either the microtubule quartet or the flagellar axenome.

Western blot analysis was also done to confirm the presence of *TbMVP1* in the cytoskeletal fraction (Figure 2.8 A). As mentioned earlier, the fluorescent signal arising from the puncta near the FAZ region was too bright that it occluded potential signal arising from the cytoplasmic pool. However, western blot analysis confirmed that *TbMVP1* also belongs to the soluble cytoplasmic pool and is not restricted to the FAZ region.

![Western blot analysis](image)

Figure 2.8: A subset of *TbMVP1* associates with the cytoskeleton

(A) *YFP-TbMVP1* overexpressing cells were fractionated into a soluble cytoplasmic pool and a detergent resistant (1% Triton-X-100 (v/v) treated) cytoskeletal extract. Western blot analysis using anti-GFP antibody reveals that *TbMVP1* is present in both the fractions. Bands of lower sizes correspond to possible degradation products. Vaults are known to associate with cytoskeletal elements, particularly microtubules, in higher eukaryotes. (B) *YFP-TbMVP1* overexpressing cells were detergent extracted for 5 minutes using 1%NP-40 in PBS, fixed with PFA and stained with DAPI. *TbMVP1* can be seen as distinct puncta along the FAZ region. The signal from the soluble cytoplasmic pool is lost. Scale bar, 2μm
2.3.6 **Dynamics of TbMVP1 accumulation along the FAZ region**

The vaults have been known to exhibit dynamic behavior in the cytoplasm of mammalian cells. A previous study established that the fluorescence of MVP-GFP was recovered within 13 seconds of photobleaching (van Zon et al. 2006). However, when the cells are treated with nocodazole, a drug that inhibits microtubule assembly, a delayed recovery was observed, suggesting that the association of vaults with cytoskeletal elements is responsible for its movement within the cells. Experiments conducted on nerve cells suggested that vaults can be actively transported back and forth within axons (Li et al. 1999). To trace the dynamic buildup of TBMVP1-YFP near the FAZ region an overexpression stable line under the control of tetracycline was used to drive TbMVP1 expression. After addition of the drug, the cells were tracked for one cell cycle to observe the expression and specific localization of vaults (Figure 2.9). The fluorescence signal was faintly noticeable by 2 hours after addition of tetracycline, however no significant signal was observed. At around 3.5 hours, TbMVP1-YFP started to appear as bright punctate structures distributed all through the cell body but excluded from the flagella. Additional faint diffuse patterning was also observed. At each time point, detergent resistant cytoskeletal extracts were also examined. Interestingly, the cytoskeletal extracts retained only the bright punctate structures and the rest of the signal observed earlier was lost. At around 5 hours, a distinct pattern was emerging with more TbMVP1-YFP assembling near the FAZ region, but excluded from the flagella. By 6.5 hours, most the cells retained only the punctate distribution along the FAZ and no diffuse patterning within cell body was observed. While the punctate structures were detergent resistant, extraction with salt and detergent,
completely removed fluorescent signal arising due to *TbMVP1*, re-emphasizing the association of *TbMVP1* with subpellicular microtubules but not with the core cytoskeleton comprising the microtubule quartet. The dynamic behavior exhibited by *Trypanosoma* vaults is comparable to those observed in other multicellular metazoans where vaults move unconstrained within the cytoplasm along microtubules. The specific accumulation near the FAZ region mid-way through the cell cycle reiterates a plausible unknown role for vaults in these single celled kinetoplastids.

Figure 2.9 Dynamic accumulation of *TbMVP1* near the FAZ region

Using a tetracycline-inducible stable line, the expression of *YFP-TbMVP1* was induced by the addition of tetracycline at time = 0 hours. The expression of *TbMVP1* was followed over various time points as indicated. The cells were either methanol fixed (A) or detergent extracted with 1% NP-40 and fixed with PFA (B) before staining with DAPI. At less than 3.5 hours, a diffuse cytoplasmic distribution was observed (data not shown). Punctate structures start to appear at around 3.5 hours and move near the FAZ region over time. Most of the cells show the FAZ localization around 6.5 hours. The punctate structures that appear are detergent resistant. Scale bar, 2 µm.
2.3.7 *TbMVP1* can assemble to form intact vault particles

It is known that 78 copies of *MVP* monomers assemble to form an intact vault complex that exhibits dihedral symmetry (Tanaka et al. 2009). Though *TbMVP1* can be visualized as bright puncta, similar to those observed in multi-cellular metazoans, whether it assembles to form intact vault complexes in single celled kinetoplastids remains unknown. It has been previously established that vaults isolated from another single celled protist, *Dictyostelium*, forms intact vault complexes composed of two *MVP* paralogs, *MVPA* and *MVPB*. Intact vault complexes are known to pellet at speed as high as 100,000g and this method has been used traditionally to make crude vault preparations (Kickhoefer et al. 1998). It is known that monomeric *MVP* remains in the soluble S20 fraction and it takes about 4 hours for individual monomers to assemble and form intact vault complexes that is found in the P100 pellet fraction (Zheng et al. 2005). Since, *TbMVP1* is found both in the cytoplasmic and the cytoskeletal pool, it was hypothesized that intact vault complexes can freely float around in the cytoplasm and also associate with cytoskeleton. In that regard, the cells were first detergent extracted to segregate the cytoplasmic and cytoskeletal fractions and the two samples were treated independently to retrieve the P100 pellet. From the previous experiment, it has been shown that *TbMVP1* strongly associates with cytoskeleton. Hence, to release the associated proteins off the cytoskeleton, the extracted cells were sonicated, cell debris removed by centrifugation and the supernatant representing the proteins released off the cytoskeleton was used for further analysis. The supernatants from both the cytoskeletal fraction and soluble fraction were subjected to high speed centrifugation at 100,000g for 1 hour at 4 °C. The pellets thus obtained, P100-cytoskeletal and P100-
soluble, and the supernatants S100-cytoskeletal and S100-soluble were analyzed by immunoblotting using anti-GFP (Figure 2.10). Interestingly P100 fraction was enriched in the soluble cytoplasmic pool than the extracted cytoskeletal pool. The cytoskeletal pool was subjected to more fractionation steps prior to high-speed centrifugation and hence, some amount of sample loss is possible.

In mammalian crude vault extracts, the S100 fraction does not show a positive band as a majority of MVP monomers assemble into intact vault particles. However, it was found that the S100 fraction from both cytoplasmic and cytoskeletal extracts showed strong bands for *TbMVP1-YFP*, pointing out to free MVP monomers that do not assemble into intact vault particles. Even in insect cells in which vaults are routinely overexpressed using a baculovirus system, the S100 fraction shows a positive band (Stephen et al. 2001). It has been established previously that MVP molecules prefer to stay in complex than as free floating monomers (Zheng et al. 2005). Hence, the high concentration of monomers found in S100 extract could be attributed to the effect of overexpression. It should also be noted that the fusion tag is C terminally located and hence, extends out from the cap region outside the vault complex. Ideally, if vaults were assembled purely with *TbMVP1-YFP* fusion proteins, 39 molecules of highly structured YFP extending out from the cap region might pose significant steric hindrance and hence could affect particle stability. A previous study established that when a highly structured 55 amino acid EGF tag was added to the C terminal region of MVP and co-expressed with N terminally tagged VSGV-MVP, the recombinant vaults only contained 6-8 copies of C-terminally MVP-EGF incorporated into an intact particle,
while the rest was composed of N-terminally tagged fusion MVP (Kickhoefer et al. 2009). This may be due to the spacious packing within the waist region with no potential steric hindrance effect. The positive signal obtained in the S100 fraction could be attributed to the same phenomenon. The presence of MVP in the cytoplasmic and the cytoskeletal P100 fractions may imply the assembly of intact vault complexes that comprise YFP tagged TbMVP1 along with endogenous TbMVP1.

![YFP-TbMVP1](image)

Figure 2.10: TbMVP1 can form intact vault particles

The high speed supernatant (S100) and high speed pellet (P100) from both the detergent resistant cytoskeletal extract and the soluble cytoplasmic pool were analyzed by immunoblotting with anti-GFP antibody. Intact vault particles pellet at 100,000g and are recovered as crude vault extracts. Western blotting shows positive bands for both cytoskeletal and soluble cytoplasmic pool after high-speed centrifugation. Not all YFP-TbMVP1 can assemble into intact particles possibly due to crowding from C-terminal YFP at the vault cap region.

2.3.8 Coiled-coil domain in TbMVP1 is responsible for punctate distribution, but not localization

The crystal structure of MVP from rat is composed of defined structural domains that contribute to the unique shape of the vault particle.
(Tanaka et al. 2009). The interaction between individual MVP molecules towards vault assembly is mediated by the C-terminal coiled-coiled domain. The coiled-coil domain marks the region between 648-800 amino acid positions in the human MVP protein.

The coiled-coil domain maps to the region termed the cap helix domain. The TbMVP1 protein was then analyzed using the COILS program (http://embnet.vital-it.ch/software/COILS_form.html) to determine the propensity of TbMVP1 to form a coiled-coiled domain (Figure 2.11). The region between 680-800 amino acids favored the formation of coiled-coil domain. To design the truncation constructs, a pairwise alignment between the rat MVP sequence and the TbMVP1 was performed to establish the conservation among the structural domains (Figure 2.12). The sequence spanning the nine structural folded domains that builds the barrel constituted the N-terminal truncated TbMVP1 and the rest of the sequence that included the coiled-coil domain comprised the C-terminal truncated TbMVP1.
Figure 2.11: TbMVP1 has a C-terminal coiled-coil region

Vaults are assembled into stable structures by interactions between individual MVP chains at the C-terminal coiled-coil region. The propensity of *TbMVP1* to form a coiled-coil domain was predicted using the COILS program. The three-colored lines indicate the various window length in terms of amino acids the program uses to predict the region. The plot shows that a region spanning 680-800 amino acids in *TbMVP1* can potentially form a coiled-coil domain.
Figure 2.12: Construction of N-terminal or C-terminal truncated proteins

TbMVP1 was aligned with rat MVP protein, whose structure has been determined at 3.5 Å, to highlight the various structural regions including the nine structural folded domain, shoulder domain, cap-helix domain and cap-ring domain indicated with different colors in the same order (Tanaka et al. 2009). Based on the alignment, the N-terminal truncated *TbMVP1* was designed to include only the structural folded domains forming the vault barrel and the C-terminal truncated protein included the region from the shoulder till the vault cap.

The sequence encoding regions 1-512 amino acids and 513-838 amino acids were cloned independently into pXS2-YFP vectors resulting in the
construction of N- and C- terminal truncated constructs. It was pointed out earlier that punctate distribution of *TbMVP1-YFP* possibly is a result of interaction between individual monomers, resulting in the formation of vault particles. The truncated constructs were designed to check if the coiled-coil domain correlates with the punctate distribution of *TbMVP1-YFP*. In that regard, transient transfection was performed into 29.13 procyclic cells and immunofluorescence was performed. It was observed that, while expression of the C-terminal truncated protein (513-838) exhibited a punctate distribution pattern, the N-terminal truncated protein (1-512) formed a diffuse patterning similar to that observed for *TbMVP3-YFP* (Figure 2.13). In spite of the punctate distribution pattern, the specific targeting near the FAZ region was abolished by expressing the C-terminal truncated *TbMVP1* (513-838). This reiterates that the coiled-coil domain is essential for interaction between MVP monomers and the phenomenon seems to be conserved through evolution. The punctate patterning is suggestive of individual monomers interacting and plausible vault particle assembly. Also while C-terminal truncated protein was detergent resistant and adhered strongly to cytoskeletal elements, the N-terminal truncated protein was detergent soluble and hence, remained in the soluble supernatant pool. This also correlates with previous observations that vaults preferentially interact with microtubules via their caps, with their long axis perpendicular to the interacting microtubule axis (Eichenmüller et al. 2003). Hence, the C-terminal truncated proteins are capable of interacting with each other and also assemble along microtubules, however some component necessary for FAZ specific localization appears to reside in the N-terminal portion of the protein.
Figure 2.13 Altered distribution patterns of truncated *TbMVP1*

The preferential FAZ targeting of *TbMVP1* was hampered when the full-length *TbMVP1* protein was truncated C-terminally or N-terminally. The N-terminal *TbMVP1* fragment that retained only the nine structural folded domains showed no puncta but a faint cytoplasmic distribution. The N-terminal truncated protein was detergent-susceptible (data not shown) and does not associate with cytoskeletal elements. The C-terminal protein fragment forms punctate structures throughout the cytoplasm, but shows no accumulation near the FAZ region. The C-terminal protein fragment that retains the coiled-coil region is however detergent resistant (data not shown) and thus capable of interacting with microtubules. Scale bar, 5 µm

2.3.9 **Differential subcellular localization of MVP paralogs**

The paralogs arising out of gene duplication events more often undergo significant evolutionary changes and may have paralogous function. It was hypothesized that if the other two vault paralogs, *TbMVP2* and *TbMVP3*, exhibit similar subcellular localization and punctate distribution akin to *TbMVP1*, the possibility of intact vault structures assembling with all three paralogs are high, like those of *Dictyostelium* composed of two MVP paralogs. In that regard, two overexpression vectors with C-terminal YFP tag were
created individually from full length *TbMVP2* and *TbMVP3* coding sequences. The vectors were transiently transfected into 29.13 procyclic cells and subjected to immunofluorescence microscopy.

It was observed that *TbMVP3* was dispersed throughout the entire cell structure with diffuse patterning (Figure 2.14 A). Though an overexpression vector was used, the fluorescence signal was quite faint. There were no punctate structures like those observed for *TbMVP1*. The bright punctate distribution observed in cells expressing *TbMVP1* is suggestive of individual monomers interacting. However, lack of similar patterning in *TbMVP3-YFP* expressing cells raises speculations if such interactions could occur between *TbMVP3* monomers. *TbMVP3-YFP* also seemed to co-localize with the nuclear stain DAPI, that stains the nuclear and kinetoplastid material. The transiently transfected cells were detergent extracted to analyze if *TbMVP3* can associate with cytoskeletal material. Unlike *TbMVP1* which strongly associated with cytoskeleton, *TbMVP3-YFP* showed no fluorescent signal in cytoskeletal preparations, suggesting that it remains in the soluble cytoplasm and does not exhibit associations with cytoskeletal elements.

The distribution pattern of *TbMVP2-YFP* was different from those observed for *TbMVP1* and *TbMVP3*. Transiently transfected procyclic cells expressed *TbMVP2* as one bright punctate spot, more often near the nucleus than the kinetoplastid in 1K1N cell type (Figure 2.14B). However, in cells in which the kinetoplastid has divided (2K1N) or post mitotic cells (2K2N) more than one bright punctate spot was observed. The patterning was consistent in almost all the cells that expressed *TbMVP2-YFP*. The bright spot was located well within the cell body and it was speculated that they could be closely
associated with basal bodies, flagellar pocket or Golgi structures. Also, detergent extracted cytoskeletons retained the punctate structures intact suggesting that the long branching *TbMVP2* paralogs can still associate with cytoskeletal structures, unlike *TbMVP3*.

Trypanosoma is characterized by a single Golgi structure (He 2007). The protist initially begins with a single Golgi structure in the G1 phase and as the cell proceeds though cell cycle new Golgi start to appear in about 2 hours. However, additional Golgi structures appear towards the end of the cycle (He et al. 2004). As the mother cell undergoes cytokinesis, only the old and new Golgi structures are retained and the additional smaller Golgi disappears. The cells transiently expressing *TbMVP2-YFP* were methanol fixed and indirect immunofluorescence was performed with anti-Tb-GRASP, an antibody that specifically labels the Golgi matrix protein. *TbMVP3-YFP* co-localized entirely with the additional Golgi structures that appeared small and faint compared to either old or new Golgi in most cases. Also, unlike the new or old Golgi that appear close to the kinetoplast, the additional Golgi structures are often found in proximity to the nucleus. The exact functions of these additional Golgi materials and why they appear at this point in the cell cycle is yet unknown. There has been no report of any marker that specifically labels these additional structures and the co-localization experiment suggests a possible role for *TbMVP2* in Golgi duplication.
Figure 2.14 Differential localizations of *Trypanosoma MVP* paralogs

(A) Cells overexpressing *TbMVP3*-*YFP* shows a faint cytoplasmic patterning that spans all along the cell body including the nucleus. No clear punctate structures are formed. (B) Cells overexpressing *TbMVP2-YFP* reveal one or two circular punctate structures that appear close to nucleus. The puncta overlaps with faint structures that correspond to additional Golgi structures (white arrow) that appear during cell division. The pattern is consistent through all stages of cell cycle. Scale bar, 2µm
2.3.10 *MVP1 is not essential for cell proliferation under normal conditions*

With the aid of gen-specific RNA interference, a stable line in which expression of \(TbMVP1 \) can be knocked-down with the addition of tetracycline was established. Western blots confirmed that expression of endogenous \(YFP-TbMVP1 \) was down-regulated after addition of tetracycline (Figure 2.15 C). The effect of a specific gene knockdown on cell-division events can be assessed efficiently by a simple cell proliferation assay. In that regard, the cell number for uninduced control and induced knockdown cell lines was assessed in normal growth media supplemented with 15% serum for 10 days. The knockdown cells displayed similar growth patterns to those of control uninduced cells (Figure 2.15 A). This suggests that the knockdown did not affect any changes that come along during *Trypanosoma* cell-cycle events including flagellum duplication, flagellar pocket duplication, elongation of the FAZ, kinetoplastid duplication and cytokinesis. Thus it is clear that \(TbMVP1 \) is not essential for cell proliferation under normal growth conditions.

2.3.11 *Mild nutrient phenotype on \(TbMVP1 \) knockdown at limited nutrient condition*

The *Trypanosoma* undergoes complex changes in life-style when acclimatizing to its insect and mammalian host. While in the mammalian host, the parasite is enriched with nutrients, in the insect host there is paucity of nutrients and the parasite has to overcome the nutritional stress. The procyclic form mimics the cell stage that is adapted to the insect host and hence a limited nutrient environment was created to see if knocking down \(TbMVP1 \) in procyclic cells has any potential effect on cell proliferation. The control and induced cells were grown in 10% diluted growth media in HBSS containing
1g/l glucose. This reduces the total serum concentration to about 1.5% and dilutes other nutrients and other growth factors tenfold. On induction of tetracycline-inducible RNAi, *TbMVP1* knockdown cells displayed reduced growth rates in limited-nutrient medium compared to uninduced cells. However, the limiting cell density achieved by the knockdown cells was lower compared to those of the uninduced cells as can be seen in Figure 2.15 B. This suggests that the role of *TbMVP1* is pronounced only during conditions of nutrient stress or starvation. This corroborates with previous observations in which *MVP* knockout in *Dictyostelium* or mouse embryonic fibroblasts (MEF) display a nutrient phenotype only on starvation but display normal growth otherwise (Vasu and Rome 1995; Kolli et al. 2004).
Figure 2.15 *TbMVP1* is important for cell survival at limited-nutrient condition

Depletion of *TbMVP1* did not affect the cell growth under normal conditions but altered the growth rates under limited-nutrient conditions as shown in A and B. RNAi was induced by addition of tetracycline and the cell proliferation rates were monitored over the indicated time points. Viable parasites (judged by motility and cell appearance) were counted with a hemocytometer. The results are presented as mean +/- SD of three independent experiments. (C) The efficiency of RNAi in knocking down *YFP-TbMVP1* expression was determined using immunoblotting analysis with anti-GFP. ‘-’ indicates no tetracycline added and ‘+’ indicated addition of tetracycline.

2.3.12 *TbMVP1* knockdown interferes with nutrient-stress related cell adhesion

It has been reported previously that *MVP* knockout MEF cells display a nutrient phenotype only when the serum was completely removed as even cells growing in 2.5% serum had growth rate comparable to those of control cells (Kolli et al. 2004). To see if *TbMVP1* knockdown shows a pronounced effect on lowering the concentration of serum and nutrients further, the media was diluted 20x in HBSS with 1g/l glucose reducing the total serum concentration to 1%. Another set of experiments without glucose was also performed. The uninduced control and tetracycline induced test cells were
monitored every 24 hours for 5 days. Though, the cell numbers were reduced to more than half in both flasks on 24 hours, more freely floating cells were observed in the induced flask than in the control flask (Figure 2.16). On closer examination it was found that, most of the control cells attached to the walls of the flask, while still being alive, which was evident from their flagellar beating. However, the *TbMVP1* knockdown cells showed no signs of attachment. Since the exact number of attached cells could not be quantified, only the freely floating non-adherent cells were counted. The freely floating cells in the knockdown flask continued to divide and cell numbers increased until day 3 after tetracycline induction. Even when cell numbers began to drop the cells never attached. The control cells, on the other hand, remained attached through the course of the experiment and hence their cell proliferation could not be monitored assessed. To the attached control cells, tetracycline was added to check for any detachment following knockdown of *TbMVP1*. It was found that the floating cell population increased by as much as tenfold on comparison to other flasks that remained uninduced (data not shown).

It is interesting to note that the induced cells subjected to limited nutrient media without glucose, seemed to exhibit higher proliferation until day 3, but the cell numbers dropped faster compared to other induced cells that were subjected to nutrient limitation with glucose (Figure 2.16 B). Addition of glucose did not have any effect on the uninduced cells. This experiment suggests that on knocking down *TbMVP1*, the parasite loses its ability to initiate a nutrient stress induced attachment phenomenon, which may help the parasite stay in a dormant state until the nutrient conditions are revived.
Figure 2.16 *TbMVP1* interference with nutrient-stress mediated cell-adhesion

A severe limited-nutrient condition (1% Serum + 20 times lowered amino acid levels to that of normal cultivation medium) triggered a cell adhesion response whereby cells attached to the walls of the flask while still being alive. While the uninduced control cells remained attached through the indicated time points in both A and B, induction by tetracycline retained more free floating cells and no cell adhesion to the flask was observed. The cell number in the y-axis corresponds to free floating cells. The results are presented as mean +/- SD of three independent experiments.

2.4 DISCUSSION

The kinetoplastids represent a group of flagellated single-celled protists that branch off early in eukaryotic evolution. Vault homologs are widely conserved across the eukaryotes and through sequence homology, kinetoplastids including *Trypanosoma* and *Leishmania*, have been known to harbor vault genes. Kinetoplastids carry multiple copies of the *MVP* gene each of which maps to different genomic loci. Based on the phylogenetic reconstruction, *TbMVP1* has a shorter branch length to other *MVP* genes and is more likely to function as the true *MVP* ortholog. The other two duplicated genes have accumulated non-synonymous mutations over the course of evolution to diverge into long-branching paralogs. From the evolutionary tree
it is evident that the ancestral kinetoplast MVP gene underwent one round of duplication. The chromosomal proximity of MVP2 and MVP3 suggest a second round of duplication, resulting in the three paralogs observed. The tree indicates that all three genes were present in the common ancestor of Trypanosoma and Leishmania. The MVP1 gene in both Leishmania and Trypanosoma map to chromosome 5, while MVP2 and MVP3 in Trypanosoma are located on chromosome 10 and those of Leishmania are found in chromosome 21 and 36. In Trypanosoma, it is known that the duplicated paralogs are a substrate of positive selection (Emes and Yang 2008). Whether the paralogs perform similar functions in other kinetoplastids or have additional alternative function is worth investigating.

It is known that vaults isolated from mammalian cells are entirely composed of one MVP ortholog while those from single-celled slime molds are made up of MVPA and MVPB proteins. To deduce if all the three MVP paralogs in Trypanosoma have similar subcellular localization, hinting at a possible structure composed of all three MVP paralogs, immunofluorescence studies were carried out. The subcellular localizations of the paralogs were different, suggestive of a different or evolved additional function for the paralogous genes. While TbMVP1 had a punctate distribution like those observed for vaults in mammalian cells, TbMVP3 had a diffuse patterning all over the cell body and TbMVP2 was expressed as a single bright puncta within the cell body, closer to the posterior end of the cell. About 5% of the total MVP expressed in mammalian cells is known to co-localize with the nucleus. Except for TbMVP3, which revealed patterns of co-localization with nucleus and kinetoplast, TbMVP1 and TbMVP2 remained excluded from the nucleus.
A recent study pursued in determining whether each of the *MVP* homologs from kinetoplastids can assemble to form an oligomeric vault complex based on 3D structure predictions and quaternary structure analysis, revealed that only the short branch length orthologs from kinetoplastids, (*TbMVP1* in the case of *Trypanosoma*), could dock laterally and fold into structure that resembles vault-like structures purified from rats or sea urchins (Daly et al. 2012). Though two other paralogs exist in each of the kinetoplastid species, they apparently do not form the conventional fold or establish interface interactions to assemble into a vault-like structure. This result agrees with the assertion based on phylogenetic analysis that the shorter branching *MVP1* is the true ortholog in kinetoplastids and also with the differential sub-cellular localization of *MVP* paralogs, emphasizing that *TbMVP1* is the true vault ortholog that forms the oligomeric vault complex in *Trypanosoma*.

While *TbMVP3* forms a diffuse patterning all over the cell, the localization of *TbMVP2* is very specific and co-localizes with the additional Golgi formed during cell cycle. The role of these additional Golgi formed during Golgi duplication and subsequent cell division is unclear, but they are known to disappear shortly before the end of cytokinesis. Their exact route for turnover or degradation is not known. The association of *TbMVP2* along with these additional Golgi inferred by co-localization studies may hint at a possible role for *TbMVP2* as a molecular marker, that helps discriminate the additional Golgi from those that will be inherited by daughter cells. This would allow the cell could maintain tight regulation in ensuring only one Golgi is inherited per daughter cells and any additional material is turned over.
The FAZ region plays a very important role in flagellar assembly, cell flexibility, motility, and is also crucial for cell segregation. In *Trypanosoma*, *TbMVP1* accumulates near the FAZ region and is expressed all along the cell body but excluded from the flagella. Co-localization studies with FAZ molecular markers, is suggestive of a partial overlap between *TbMVP1* and FAZ filament, with *TbMVP1* preceding the FAZ filament from within the cell body. In *Trypanosoma*, the region around the FAZ, is marked by the MtQ and other microtubule associated structures that regulate cell cycle, and hence it was speculated that knockdown of *TbMVP1* might have adverse effects on cell division. However, the knockdown cells exhibited similar proliferation profiles like those of the control cells and displayed no obvious phenotype. This suggests that *TbMVP1* is a dispensable gene in *Trypanosoma* under normal cellular conditions, as in other eukaryotes.

Various studies have established that vaults preferentially move inside the cell guided by its attachment to cytoskeletal matter. Though vault distribution in mammalian cells exhibits a punctate distribution, the metabolic state of the cell is known to influence their dynamic distribution and cause selective clustering. The fact that they remain enriched within lamellipodia in spreading fibroblasts raised speculations if they associate with actin fibers (Kedersha and Rome 1990). However, co-localization studies confirmed that they do not associate with actin stress fibers; instead they displayed profound co-localization with beta-tubulin molecules (Herrmann et al. 1999). In fact vaults have been observed to arrange in a filamentous pattern along microtubules in a wide range of eukaryotic cells (Hamill and Suprenant 1997). If the movement of the vault across the microtubule is a conserved feature, it
should have evolved early in evolution. In *Trypanosoma*, a single-celled eukaryote it was observed that *TbMVP1* is specifically retained in detergent extracted cells, pointing to its association with the microtubule corset. The subpellicular corset in *Trypanosoma* is arranged as a linear array of microtubules that retain cross-links with each other and with the membranes. The microtubules play a major role in dynamic remodeling of the cell and in maintaining the close tethering between all associated structures. The dynamic study that focused on accumulation of *TbMVP1-YFP* suggested that a subset of vaults always interact with the subpellicular corset as observed by a bright punctate distribution. It is also interesting to note that vaults display a preferential accumulation near the FAZ region in a microtubule-aided manner. This is evidence that vaults indeed move along the microtubules and that its association with cytoskeletal elements already evolved in ancient eukaryotic ancestors. It is worth mentioning that *TbMVP2-YFP* also is cytoskeletal-associated, while *TbMVP3-YFP* has undergone evolutionary changes that somehow abolish its interaction with cytoskeleton, and possibly disrupt vault complex formation.

It is known that the vaults bind to microtubules via their cap region, with their long axis perpendicular to that of microtubules. Truncation studies in *Trypanosoma* suggested that the association of *TbMVP1* with cytoskeleton was disrupted when the cap-helix and cap-ring domain were removed in the N-terminal fragment protein. The cap-helix region, which also forms a coiled-coiled domain, is necessary for interaction between MVP monomers. The C-terminal fragment protein, which retained the coiled-coiled domain, exhibited association with the cytoskeleton, albeit with no preferential accumulation.
near the FAZ region. The dynamic behavior of full-length *TbMVP1* suggested that it initially appears as punctate structures spread through the cell body and assembles near the FAZ region over time. It may be reasoned that the C-terminal fragment protein, in spite of forming an association with cytoskeleton, is not specifically bound to the FAZ region as it cannot form complete vault structures. Thus we can conclude that FAZ binding is mediated by some structure in the N-terminal portion of MVP1. Fully formed intact complex from individual monomers may be a prerequisite for movement of vaults across microtubules using molecular motors.

In many eukaryotic cell types studied till date vaults are known to cluster along the growing ends of cell, suggestive of a role for vault in cell growth (Paspalas et al. 2009). As mentioned earlier, a shorter FAZ correlates with shorter daughter cells. The accumulation of *TbMVP1* along the FAZ region hints at a possible role of MVP in controlling cell growth and size. A recent study conducted on TOR complexes in *Trypanosoma*, identified *TbMVP1* as protein that interacts with TbTOR4, one of the four TOR kinase paralogs in *Trypanosoma*, to form a unique TOR complex TbTOR4C (Barquilla et al. 2012). TOR plays an important role in stress resistance, cell growth and also acts as an important sensor for protein synthesis, and ribosome biogenesis. The TbTOR4C is distinct from the TbTORC1 and TbTORC2 complexes that are known to control cell size and cell growth, respectively, in *Trypanosoma*. The TbTOR4C is known to negatively regulate differentiation of the proliferative slender bloodstream form, triggered by reduced cellular energy state (high AMP:ATP ratio), into the G0 state arrested quiescent stumpy form. The quiescent form display reduced motility and is
also preadapted to transform into insect procyclic form. This implicates vaults in processes relating to cell-cycle regulation and also cell growth in response to nutrients and energy conditions.

The ubiquitous expression and wide conservation of vaults across many eukaryotes is suggestive of a very fundamental function for vaults. The appearance of vaults in kinetoplastids and their expansion into duplicated paralogs, possibly out of positive selection, is evidence that they evolved for specific functions. As it is a huge complex composed of many assembled amino acids, each cell expressing vault is bound to invest significant amount of cellular energy in its translating the protein. So far, the only phenotype to have been reported consistently in any MVP knockout studies has been a nutrient phenotype. In MEFs, nutrient the phenotype became apparent only when serum was withdrawn completely for 24 hours as the MVP knockout cells displayed similar proliferation rates as control cells with 10, 5 or 2.5% serum (Kolli et al. 2004). The elevated population of cell arrest at G0 stage and increased cell death was positively correlated with growth factor deprivation. In Dictyostelium, the dual MVPA and MVPB knockout cells reach only 1/3rd of cell densities when grown in nutrient limited medium, however, do not show any profound effect in normal media (Vasu and Rome 1995). These results are comparable to that observed in Trypanosoma on TbMVP1 knockdown. Cells grown in normal medium supplemented with growth factors and 15% serum showed similar proliferation rates compared to uninduced control cells, while knockdown cells grown in limited nutrient media achieve lesser cell densities than uninduced cells grown in similar conditions. The strategy employed here is an RNAi based knockdown approach, which may
not display high efficacy as full-gene knockout method. The nutrient phenotype may become more obvious if such stringent check on gene expression is employed, and the remaining MVP2 and MVP3 genes knocked out as well.

It is observed here that vault containing control cells compromise their motility and attach to the substrate as a nutrient stress response. MVP1 knockdown cells with no vault lose the ability to attach to substrate under these conditions, which may indicate that vaults act as a nutrient sensor, perhaps structurally altering cell motility within the FAZ. In extreme nutrient stress situations, vaults could possibly co-ordinate events that would confer partial resistance to unfavorable conditions in Trypanosomatids by maintaining the parasite in a quiescent state. This phenomenon is reminiscent to those observed in Trypanosoma cruzi, wherein metacyclogenesis and adhesion to substrate are induced by nutritional stress. Metacyclogenesis occurs when the insect form epimastigotes attach to intestinal walls before and differentiate into infective metacyclic trypomastigotes (Bonaldo et al. 1988). Incubation of the epimastigotes in chemically defined limited nutrient medium TAU3AAG creates a nutrient stress like environment and forces the parasite to attach to the walls of the substrate, before they differentiate (Figueiredo et al. 2000). During this process, T. cruzi is known to rely on proteins accumulated in stores called reservosomes as energy source to fuel the attachment and differentiation process, thus establishing an important link between nutrient stress, adhesion and cell differentiation (Soares 1999). Unlike the T. cruzi, the epimastigotes of T. brucei are known to attach to salivary gland before they differentiate into meta cyclic trypomastigotes. The attachment observed in the
case of uninduced control cells procyclic Trypanosomes in limited nutrient conditions may be compared to such a process. Thus, it could be suggested that vaults have a role to play in triggering attachment of cells as response to starvation. The cells probably display a quorum sensing mechanism that forces them into a quiescent non dividing state, thus conferring resistance to unfavorable conditions. A similar response is well known in Dictyostelium, whose cells become adherent and non-dividing during starvation-induced multicellular fruiting body formation. As mentioned earlier, TbMVP1 is a part of the TbTOR4 complex that regulates differentiation of the proliferative bloodstream form into a quiescent stumpy form. It can be speculated that the packing of intact vaults in the FAZ may help regulate cell length. This is suggestive of important roles for vaults in nutrient assisted morphogenetic events widely prevalent in single-celled eukaryotic species. Vaults seem to function both as a nutrient sensor, probably on similar lines of the TOR complex, and may also exert pivotal roles during cell elongation and differentiation process in Trypanosoma brucei.
Chapter 3

Unraveling the Evolutionary History of the Vault Complex

3.1 INTRODUCTION

Vaults have been isolated from numerous eukaryotic species including mammals, bullfrog, chicken and the slime mold Dictyostelium (Kedersha et al. 1990). With advances in genomic and proteomic technologies, MVP has been described in many invertebrates including tubeworms and molluscs (Sanchez et al. 2007; Dondero et al. 2006). The absence of vaults in other prominent experimental organisms including Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae and Arabidopsis thaliana has confounded researchers in understanding its functional evolution and its selective exclusion from certain lineages. Understanding the evolutionary origin of vault and its components may provide insights into their puzzling phylogenetic distribution and also help identity common traits between all organisms harboring vault genes, thus hinting on its primary function. In this section, comparative genomics and phylogenetics-based approach have been used to understand the distribution of vault genes across all phyletic groups and also to reconstruct the evolutionary history of the vault complex.
3.2 MATERIALS AND METHODS

3.2.1 Sequence retrieval

The human MVP sequence (Accession No. NP_059447.2) of length 893 amino acids, was used as a query in a protein BLAST search to identify homologs in the GenBank non-redundant protein database. The BLAST hits were manually assessed and sequences smaller than 600 amino acids were not included for phylogenetic analysis. In addition, pre-computed sequence alignment list for the query sequence generated by an all-against-all BLAST search (BLINK) was also inspected to screen for additional sequences across the taxonomy. Position-specific-iterated BLAST (PSI-BLAST) was performed to improve sensitivity and capture potential orthologs from distant evolutionary groups. MVP homolog of the cyanobacteria Moorea producens 3L (Accession ZP_08432100.1) annotated as ‘membrane protein, colicin uptake’ showed high levels of similarity with MVP sequences from molds. The gene mapped to the Lyngbya majuscula 3L genomic scaffold scf52120 (Moorea producens was misclassified as Lyngbya majuscula previously). The sequence was retained for further analysis since the presence of the expressed protein was confirmed by MudPIT analysis. The protein annotated as MVP from Hordeum vulgare (barley) was dismissed from the dataset since the predicted protein, with accession BAK00750, was derived from the complete CDS (coding sequences) clone and the gene could not be located on the physical map of the barley genome assembly. The protein was excluded from the analysis suspecting possible contamination from mold in the same environment.
In the compiled list of homologous proteins, sequences displaying duplicated copies within the same species were encountered. In such cases, the genome locus information was extracted for each of the proteins to confirm the presence of multiple genes transcribing similar proteins. If two proteins (isoforms or redundant proteins) have the same chromosomal information (or scaffold information), only one was retained for subsequent analysis. This resulted in a refined dataset of 109 full-length proteins.

A similar search was also conducted for human *TEP1* (Accession No. NP_009041) and human *VPARP* (NP_006428), comprising the minor vault proteins, using the human sequences as query. Redundant sequences and proteins that map to same genomic loci were discarded.

3.2.2 **Sequence alignment and phylogenetic analysis**

The sequences were aligned using the MUSCLE multiple sequence alignment algorithm (Edgar 2004). An initial alignment was constructed to remove truncated or poorly aligned proteins. For further refinement and subsequent phylogenetic analysis, the alignment was manually edited using MEGA5 (Tamura et al. 2011). Poorly conserved regions, which could obscure phylogenetic information, were deleted. The process of editing and realigning was repeated several times until large gaps were removed. Many regions in sequences of basal deuterostomes and kinetoplastids were not information rich and were based on predictions from genomic data. These possibly included non-coding regions or misidentified exon boundaries. Such blocks of
ambiguous regions were removed and not used for subsequent phylogenetic analysis.

The phylogenetic analysis was performed using MEGA5 package. The refined alignment was used to identify the amino acid substitution model that fits the data best. It is known that the Bayesian information criterion (BIC) has higher accuracy and precision compared to the Akaike information criterion (AIC) for appropriate model selection (Luo et al. 2010). Hence, the model with the lowest BIC score was used for phylogenetic reconstruction. The evolutionary history was inferred using the Maximum Likelihood method (ML). To account for variable substitution rate among sites, the gamma distribution was defined using 6 substitution rate categories and the tree was built using the best amino acid substitution model. Positions containing gaps and missing data were ignored for tree construction. The reliability of the tree was tested using 100 bootstrap replicates. The ML tree was established using a heuristic search based on nearest neighbor interchange. The Neighbor Joining (NJ) analysis based on equal input distances with 1000 bootstrap replicates was also performed in indicated datasets in addition to the ML inferences. In most cases both ML and NJ analyses gave similar topologies and hence, in the interest of clarity, only the topology obtained using ML will be presented.

3.2.3 Essential amino acid analysis

The pathways corresponding to synthesis and metabolism of common essential amino acids – Leu, Val, Ile, His, Trp, Met, Lys, Thr, Phe and conditionally essential amino acids Pro and Arg in the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for the analysis. The biosynthetic pathways for the above-mentioned amino acids were analyzed in the
organisms included for phylogenetic analysis for their completeness. This was done by manually confirming the presence of all the enzymes required for its synthesis. For other organisms of interest including *P. pacifica*, *M. marina* and *M. producens 3L* for which data was not available on KEGG, the sequences of all enzymes involved in the amino acid biosynthesis pathways of closely related organisms were retrieved. The sequences of all enzymes obtained from *Sorangium cellulosum* were used to seed for enzyme orthologs in *P. pacifica* and the sequences obtained from *Trichodesmium erythraeum* were used to identify enzyme orthologs from *M. marina* and *M. producens 3L*. The BLAST hits thus obtained were manually screened for protein coverage, identity and e-value to check for the presence of true enzyme orthologs. Amino acids for which the organism retained enzyme orthologs required for synthesis, were considered non-essential. If the identified orthologs were found insufficient to make an intact synthetic pathway, the amino acid was considered essential in that organism. In cases where there are multiple or alternate pathways to synthesize an amino acid, all the subsidiary pathways were also considered. As a control, analysis was made on the eukaryote, *Saccharomyces cerevisiae*, which can synthesize all of the above-mentioned amino acids. For the purpose of analysis, protists including *Entamoeba histolytica*, *Toxoplasma gondii*, *Tetrahymena thermophil* and *Trichomonas vaginalis* that do not harbor vault genes were also included.

3.3 RESULTS

3.3.1 Unique Phylogenetic Distribution of MVP

To reconstruct the evolutionary history of the vault complex, proteins homologous to the human *MVP* were extracted from all available taxonomic
groups and manually screened to include highly similar and full-length proteins. The initial dataset of 132 sequences comprised of more than one sequence from certain organisms. Some of these were redundant sequences, while others were paralogs that arose out of a gene duplication event. To identify the paralogs from the redundant sequences, a multiple sequence alignment was built from the initial dataset followed by constructing a neighbor joining tree, hence pruning the dataset to 109 sequences. The paralogs were also confirmed by mapping onto genomic loci whenever data was available.

A Maximum Likelihood (ML) tree was generated for MVP proteins across all the lineages (Figure 3.1). The unrooted phylogenetic tree thus obtained suggested that there is but one autotroph with vault gene, a filamentous cyanobacterium *Moorea producens* 3L, and all sequenced plant, algae, fungi and archaea lack vault genes. Xenologs of MVP were also found in certain species of heterotrophic bacteria with gliding motility. The appearance of vault like sequences in discrete bacterial species is suggestive of independent horizontal gene transfer events. Single copies of the MVP gene were observed in all chordates including the invertebrate tunicates (*Oikopluera dioica* and *Ciona intestinalis*) and cephalochordates represented by lancelet *Branchiostoma floridae*. The heterotrophic single celled eukaryotes, choanoflagellates, considered to be the closest relatives of animals and represented by *Monosiga brevicollis* and *Salpingoeca sp.* also were found to have only one MVP homolog (King et al. 2008). *Capsaspora owczarzaki*, an amoeboid symbiont and a putative sister-organism to metazoans and choanoflagellates, of class Filasterea has two homologs of MVP (Ruiz-Trillo
et al. 2006). The Cnidarians represented by *Nematostella vectensis* and *Hydra magnipapillata* and the ambulacrarians comprising the hemichordate *Saccoglossus kowalevskii* and the echinoderm *Strongylocentrotus purpuratus* have at least two copies of the *MVP* gene. The parazoan sponge, *Amphimedon queenslandica*, has multiple paralogs while the simplest multicellular metazoan and the only representative of the phylum placozaoa *Trichoplax adherans* has one copy of the vault gene.

Among the protists, the ciliate represented by *Oxytricha trifallax* and the amoebozoan slime molds *Dictyostelium discoideum* and *Polysphondylium pallidum* have two *MVP* paralogs that clearly separate out in the unrooted tree. Another ciliate, *Paramecium tetraurelia* seems to have undergone two rounds of duplication, which is evident from the branching within each paralog node. The paralogous proteins arise from different genomic scaffolds and hence are considered products of gene duplication events. As mentioned earlier, in the kinetoplastids represented by genus *Trypanosoma* and *Leishmania*, two of the three homologs (*MVP2* and *MVP3*) have longer branches (rapidly evolving) and in the unrooted tree they cluster along with the ciliates, while *MVP1* clearly separates out.
Figure 3.1 Phylogeny of all retrieved MVP homologs across the taxa

The shown topology is a bootstrap consensus tree obtained by maximum likelihood method based on the WAG model. Collapsed branches represent those that were produced in less than 50% bootstrap replicates. In this and subsequent phylogeny figures, the node support values are given in the order of ML and NJ bootstrap percentages unless otherwise stated. Values are given for all nodes supported by >70% bootstrap support in either of the methods. The branch length is directly proportional to the number of substitutions per site. Sequences from 23 organisms are clustered into the “Mammals” clade. The “Kinoplastid” clade represents sequences from both Trypanosoma and Leishmania and the “Slime Molds” represent sequences from both Dictyostelium and Polysphondylium. The cyanobacterial MVP xenolog from Moorea producens is highlighted in green. The tree is modeled with sequences from diverse evolutionary groups evolving at different rates and hence, suffers from long-branch attraction.
3.3.1.1 MVP in a Non-Nitrogen-Fixing Cyanobacterium

A well-conserved MVP gene is found in the very recent genome sequence of the marine filamentous cyanobacterium *Moorea producens 3L* (previously misidentified as *Lyngbya majuscula 3L* due to morphological similarities) (Engene et al. 2012). The filamentous cyanobacterium forms sheaths composed of exopolysaccharide and harbors heterotrophic bacteria and other microbes on its exteriors. The MVP gene was not only annotated at the genome level, but its protein product was confirmed to be abundant by mass spectrometry (Jones et al. 2011). It is an ancient vault gene similar to the gene in molds and ciliates, and close to where one might anticipate the root of the MVP gene tree to be placed. It is worth noting that *Moorea producens 3L* has lost genes involved in nitrogen fixation and was shown, using heavy nitrogen labeling, to compensate through intracellular protein recycling. Interestingly, there are no MVP genes in the nitrogen-fixing filamentous cyanobacterial genomes of *Nostoc punctiforme* and *Trichodesmium erythraeum* or even in the closely clustering genera *Coleofasciculus* and *Symploca* (Jones et al. 2011; Engene et al. 2012). In the following phylogenetic reconstructions, the cyanobacterial sequence is used to root the trees.

3.3.1.2 MVP Xenologs in Certain Gliding Heterotrophic Bacteria

The search for MVP homologs also retrieved a small group of heterotrophic bacteria that encode full-length proteins and align along vault proteins from eukaryotes. The bacterial species are obligate heterotrophs with gliding motility. Two of the species *Plesiocystis pacifica* and *Corallococcus coralloides* belong to the Myxococcales, a family of social eubacterial
predators that transition from single-celled to multicellular fruiting bodies upon starvation, in a mechanism analogous to Dictyostelium discoideum (Iizuka et al. 2003; Huntley et al. 2012). P. pacifica has two MVP paralogs while C. coralloides has only one homolog. Vault coding genes, however, are absent from the complete genomes of other myxobacteria including Myxococcus xanthus or Sorangium cellulosum (Schneiker et al. 2007). Microscilla marina and Flexibacter litoralis, which only has one copy of the gene, belong to Cytophagales that are marine unicellular gliders. The Saprospira grandis, a multicellular filamentous Sphingobacteriale has one vault homolog. It is interesting to note that this organism preys on other bacteria and protists since amino acid biosynthetic pathways for the essential amino acids are incomplete (Saw et al. 2012).

The topology of the ML tree constructed with only bacterial proteins clearly delineates the C. coralloides and M. producens 3L sequences from the rest of the sequences (Figure 3.2). While the rest of the proteins cluster into one clade, the paralog from P. pacifica clearly branches out. This may be an organism specific duplication event as no paralogs could be detected in other bacterial species.
Figure 3.2 Phylogenetic relationships among all the bacterial MVP xenologs

Shown is the unrooted ML bootstrap consensus topology obtained based on the WAG+G+F model of evolution. *C. coralloides* is evolutionarily closer to the cyanobacterial ortholog (indicated in green) than to the rest of the bacterial sequences that seemed to have undergone substitutions over the period of evolution. The long branches and lack of large numbers of other related bacterial species with MVP genes suggests these xenologs correspond to independent horizontal transfer events, rather than common descent. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods.

3.3.2 Evolutionary Origin of MVP and Independent Horizontal Gene Transfer Event into Eukaryotes

While the initial phylogenetic tree gives an overview on the distribution of vaults across the taxonomy, it does not clearly define the evolutionary origins of vaults. The evolutionary relationships among the unicellular protists are, not surprisingly, ambiguous due to crowding from paralogs that have particularly long branches. Intriguingly, looking at the span of MVP genes across the phyletic groups, it is clear that while MVP is predominantly represented in the Unikont clade that comprise the amoebozoans and the opisthokonts (metazoans and choanozoa), there seems to be a limited representation of organisms with MVP from the superphylum Excavata (kinetoplastids) and from the chromalveolate clade (*Phytophthora*) that also includes the alveolata (ciliates). A comprehensive search for the all homologs of MVP in the Excavates using BLAST or PSI-BLAST retrieved no
other sequences except for the Kinetoplastids homologs from phylum Euglenozoa and the closely related *Naegleria gruberi* homolog from phylum Percolozoa. Closely related groups including the Diplomonads or Jakobids belonging to the Excavates did not have any *MVP* homologs. Even organisms that are known to branch closely with the Kinetoplastids within the Euglenozoa phylum, *Diplonema papillatum* or *Euglena gracilis*, did not have any putative *MVP* homologs (Simpson et al. 2006). Though a common ancestor of kinetoplastids had an *MVP* gene, it seems unlikely that it emerged in common ancestor of Euglenazoa.

The situation is quite similar with respect to occurrence of *MVP* in *Paramecium* or *Phytophthora*. Except for the ciliates *Paramecium* and *Oxytricha trifallax*, other close-branching alveolates like *Toxoplasma gondii*, *Tetrahymena thermophile* or *Plasmodium* do not encode any vault genes. Even within the heterokonts, apart from the homologs of *MVP* in genus *Phytophthora*, there seems to be no other organism carrying genes similar to *MVP*.

If *MVP* indeed arose in a single-celled eukaryote ancestral to both unikonts and bikonts, has the gene been specifically lost multiple times across many phyla over evolution so as to be underrepresented in only a sparse set of organisms in bikonts?

Given the large amount of sequence data now available, as EST datasets and complete datasets and complete genomes, a scenario of repeated gene loss seems unlikely. Instead, unlikely. Instead, a parsimonious interpretation would suggest multiple horizontal gene transfer events into the bikonts from an ancestral unikont. This may be
may be compared to similar gene transfer events that led to the occurrence of vault genes in certain specific groups of bacteria. Taking into account the current distribution of MVP in sequenced genomes, the existence of vault genes in specific organisms of excavates, ciliates or heterokonts could be parsimoniously explained by only five independent ancestral horizontal gene transfer events - two into excavates and ciliates each and one into Phytophthora (Phytophthora (Figure 3.3). Apart from these horizontal transfer events, secondary loss events at the level of fungi, Icthyosporea (a sister clade to metazoans, choanoflagellates and Capsaspora) and ecdysozoan protostomes would best describe the most parsimonious evolutionary scenario that led to the origin of vault and its distribution among eukaryotes. Thus it appears that multiple horizontal transfer and loss best explains the anomalous phylogenetic distribution of MVP.

The ancestral emergence of MVP genes in the unikont clade is shown in Figure 3.4(top). The ancestral unikont could have acquired the gene by horizontal transfer from a cyanobacterium (Moorea producens 3L) that relied on intracellular amino acid storage capability to account for the loss of nitrogen fixation genes. Hence, the tree has been rooted with this sequence. The clear delineation of amoebozoans from the rest of the opisthokonts can be observed. This tree is in acceptance with well-established organismal relationships except for the placement of Capsaspora within the invertebrate clade. The invertebrates seem to have undergone lineage specific duplications and form long branching paralogs. The long branches that skew the other branches were removed in (Figure 3.4 bottom)
Figure 3.3 Phylogenetic analysis of MVP genes in protists
Shown is the bootstrap consensus tree obtained by ML analysis based on rtREV+G+F model of evolution. The independent lineage-specific duplications that occurred in the protists are strongly supported. The slime molds that belong to unikonts display tightly supported branching. The bikont protists are marked by exceptionally long branching sequences suggesting considerable evolutionary changes. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods.
Figure 3.4 Evolutionary origin of MVP
The tree that likely represents the origin of MVP genes in eukaryotes. The bacterial xenologs and long branching protists sequence have been removed. The shown topology is a bootstrap consensus tree obtained by ML method based on the rtREV +G (top) and JTT+G (bottom) model of evolution rooted with cyanobacterial sequence. The long branching paralogs (gray box in top) have been removed from the topology in bottom. Values are given for all nodes supported by >60% bootstrap support. The branch length is directly proportional to the number of substitutions per site. The black triangle represents all the vertebrate sequences that are clustered into a single clade. Black diamond indicates 100% bootstrap support for the indicated.
Although horizontal gene transfer is a rare event in multicellular opisthokonta and Plantea, it is well documented in Amoebozoa, Excavata and Chromalveolata (Nosenko and Bhattacharya 2007; Henze et al. 2001). Sparse phylogenetic distributions of specific gene families have been previously reported in protist genomes (Andersson et al. 2006). Horizontal gene transfer of certain enzymes involved in glycolytic pathway to protists (Excavates) from an ancestral cyanobacterium has also been observed (Henze et al. 2001). Lateral gene transfer is a recurrent attribute of protists that particularly follow a phagotrophic lifestyle (Andersson 2005). The acquired genes more often may offer undue advantages to these eukaryotes to explore new environments. Thus it is speculated that these bikont protists also acquired MVP gene in a similar scenario.

Accordingly, individual trees for depicting gene transfer into Kinetoplastids, Phytophthora and ciliates were constructed and the trees were rooted with the cyanobacterial sequence. The choanoflagellate sequences were also included for analysis as a representative from opisthokonts. In all the trees shown in Figure 3.5, it is evident that the choanoflagellates are closer to the cyanobacterial sequence than to any other protists, suggesting that the long branching and rapidly evolving protist sequences were a result of early horizontal gene transfer events. The ancestral kinetoplastid had one copy of the vault gene, even before the divergence of Trypanosoma and Leishmania likely occurred (as discussed in Chapter 2). It is known that gene duplicates in Trypanosoma arose out of tandem duplication events (Jackson 2007). In Trypanosoma chromosomes 4 and 8 are revealed to be partial duplicons that
arose out of a large-scale duplication event (Jackson 2007). The occurrence of multiple copies of \textit{MVP} gene could be attributed such large scale duplication events.

Of the ciliates \textit{Paramecium} has four \textit{MVP} paralogs, likely arising from whole genome duplication events, since at least three successive whole-genome duplication events have been attributed to the appearance of most of the genes in \textit{Paramecium} (Aury et al. 2006). The paralogs of \textit{MVP} that arose out of the second round of duplication have not undergone many substitutions through evolution given the small branch lengths corresponding to the bifurcating branches. The duplicated paralogs map to different loci on the genome and hence, are not the same genes. However, another ciliate, \textit{Oxytricha trifallax}, has only two paralogs. In \textit{Oxytricha trifallax}, a chimeric chromosome that arose out of duplication events in a process akin to exon shuffling has been described (Zhou et al. 2011). Since, there are no other ciliate representatives it is difficult to assess if the paralogous expansion occurred in the common ancestor of these two organisms or if the duplicates arose independently in these two organisms.
Figure 3.5 Horizontal gene transfer events into eukaryotic protists belonging to Bikonta

Shown are the topologies obtained using the ML method for (A) Kineoplastids and NJ method for (B) Paramecium (C) Phytophthora. The ML tree was built using the WAG+G model of evolution. All the trees have been rooted with the cyanobacterial sequence and the choanoflagellates are included for the purpose of analysis. The tight branching of the cyanobacteria with the choanoflagellates away from the long branching bikont protist sequence in all topologies is suggestive of a horizontal gene transfer event into these ancient protists.

Given the observation of vault gene and protein in a cyanobacterium, it could be argued that a common ancestor of both the cyanobacteria and the gliding heterotrophic bacteria had vaults. However, to claim such a common decent, massive numbers of loss events of the MVP gene in a large number of bacterial species must be accounted for. Hence, few independent horizontal
transfer events, possibly from ancestral unicellular protists which may have been in the same habitat, are more parsimonious. Also, unlike the cyanobacterium, the MVP genes in the heterotrophic bacterial species have undergone significant evolutionary changes adapting to G+C in both nucleic acid and protein sequence indicating the direction of horizontal transfer from eukaryote to bacteria. It is yet unknown if these gliding heterotrophic bacterial MVP genes produce protein or form functional vaults.

3.3.3 **Divergence of MVP in Opisthokonts**

From the previously discussed phylogenies, it is clear that MVP either originated or emerged by horizontal gene transfer into the unikonts clade. Apart from the amoebozoans, the unikonts comprise the choanozoa, fungi and metazoans. This section charts the spread of MVP in the opisthokont clade with emphasis on the metazoans.

3.3.3.1 **Evolution of MVP in Deuterostomes**

41 protein sequences representing deuterostomes from chordates, echinoderms and hemichordate were used to reconstruct a comprehensive ML phylogeny of the vault proteins. The JTT was selected as the best amino acid substitution model and gamma distribution parameter was estimated to be 1.043 corresponding to moderate variation. The analysis also included the small branching *Capsaspora* homolog along with choanoflagellates as an out-group (Figure 3.6). The deuterostome topology reveals a clear separation of the vertebrate and the invertebrate sequences with well-supported clades. As mentioned earlier, the chordates have only one MVP homolog. It is seen that
the MVP homolog of the cephalochordates and tunicates (invertebrate chordates) clusters along with the ambulacrarians with good branch support in the consensus tree, forming a sister clade to the vertebrates. The tunicate *Oikopleura dioica*, however, does not cluster along with the invertebrates, instead branches out separately as a long-branch attraction artefact. Though it looks like the sequence has undergone significant evolutionary changes, there is a possibility that non-coding or intron regions have been included, since the sequence is predicted from whole genome shotgun assembly. The paralogs of the ambulacrarians, sister group of chordates and represented by sea urchins and acorn worms, were distinctly grouped out to form a separate clade with long branches with 100% support. Analysis of the dataset suggests that these paralogs are likely the result of independent lineage-specific duplications that could have occurred in the invertebrates after divergence of vertebrates. It is difficult to distinguish whether the additional copies have altered or paralogous functions. Removing the paralogs and the long branching *Oikopleura dioica* sequence did not alter the topology of the deuterostomia tree. In both the reconstructed topologies, the *Capsaspora* sequence was found to cluster within the invertebrate clade instead of branching out as expected.

The choanoflagellate has only one MVP homolog. Hence, it is prudent to consider that the ancestral deuterostome had only one MVP homolog and the appearance of paralogs occurred after the divergence of the chordates from ambulacrarians. The depicted phylogeny corresponds well to major events in vertebrate evolution including the teleost-tetrapod split that occurred around 450 Mya and the origin of birds from a common ancestor of reptiles (Ravi and Venkatesh 2008). From the presented phylogeny it is evident that vault
proteins are found in three of the deuterostome phyla except for the phylum Xenacoelomorpha, previously associated with Platyhelminthes, that includes the Xenoturbellids and acoemomorph worms (Telford 2008). Searching the NCBI trace archive did not reveal any homologs in this newly classified phylum and hence, it is concluded that vault genes are lost in this phylum.
Figure 3.6 MVP evolution in deuterostomes

Maximum Likelihood (ML) tree describing evolutionary relationships among MVP genes in deuterostomes rooted with choanoflagellates with long branches included (top) and removed (bottom). The shown topology is a bootstrap consensus tree based on the JTT+G model of evolution. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods. Values are given for all other nodes supported by >70% bootstrap support in either of the methods. The branch length is directly proportional to the number of substitutions per site. Sequences from 23 organisms are clustered into the “Mammals” clade.
3.3.3.2 *MVP in Non-Deuterostome Opisthokonts*

Homologs from cnidarians, protostomes, choanoflagellates, parazoan organisms (including T. adherans and A. queenslandica), and sequences from molds were used to make an initial ML tree with the cyanobacterial species out-group (Figure 3.7). The tree showed a clear delineation of the non-deuterostome opisthokonta from the molds. Paralogs from cnidarians, amoeboid symbiont C. owczarzaki and porifera A. queenslandica cluster together with long branches. The A. queenslandica sequence also had a long branch and hence was removed from subsequent analysis. Distinct paralogs were removed and the tree was reconstructed with only one species in each organism. Cnidarians, placozoan T. adherans, oyster C. gigas and C. owczarzaki formed a clade sister to the choanoflagellates Salpingoea sp. and Monosiga brevicollis. Sequence from molluscs clustered along with cnidarians and placozoa. The platyhelminthes (Clonorchis sinensis and Schistosoma mansoni) formed a paraphyletic group with strong support. The position of C.owczarzaki relative to metazoan and choanoflagellate has always remained unclear and is found to vary depending on the genes being analysed (Ruiz-Trillo et al. 2008; Ruiz-Trillo et al. 2004). MVP orthologs and paralogs of the invertebrate deuterostomes including the ambulacrarians, lancelets and tunicates cluster near the orthologs and paralogs of non-deuterostome opisthokonta. There is a delineation in the evolution of vaults from the unicellular choanoflagellates to invertebrates and protostomes and finally to vertebrates. Protostomes, like the chordates, have only one MVP homolog and the fact that they cluster near choanoflagellates, invertebrate deuterostomes
and cnidarians with strong support underscores the lineage specific duplications that occurred after the protostome-deuterostome split.

Figure 3.7 Evolutionary relationships between non-deuterostome opisthokonts
ML tree showing evolutionary relationship among MVP genes in non-deuterostome opisthokonts and amoebozoans with long branches included (top) and removed (bottom), rooted with the cyanobacterial MVP sequence. Shown is a bootstrap consensus topology obtained based on the rtREV+G model of evolution. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods. Values are given for all other nodes supported by >70% bootstrap support in either of the methods. The branch length is directly proportional to the number of substitutions per site.
3.3.3.3 Only Lophotrochozoan Protostomes have MVP

From the depicted phylogenetic tree it is evident that a few protostomia, including the parasitic flukes and oyster that harbor vault genes (Figure 3.7). *MVP* transcripts have also been identified experimentally in annelid *Riftia pachyptila* (Sanchez et al. 2007). While lophotrochozoan protostomes represented by flatworms, annelids and molluscs have vault genes, many complete genomes from insects and nematodes representing ecdysozoan protostomes lack vault genes (Stephen et al. 2001; Berger et al. 2008). The phylogenetic pattern of *MVP* gene distribution suggests that it appeared as a full-length gene in a single celled ancestor of eukaryotic animals and molds but it was subsequently lost after the metazoan radiation from the common ancestor of fungi and ecdysozoa explaining why vault complexes are missing from model organisms *S. cerevisiae*, *Drosophila* and *Caenorhabditis elegans*.

3.3.4 Co-evolution of VPARP and TEP1 with MVP

The minor vault proteins, *VPARP* and *TEP1*, associate with naturally occurring vaults and co-purify along with the *MVP* gene. In this section the evolution of these minor vault proteins are also analysed to trace their evolutionary timeline.

A previous phylogenetic analysis aimed at understanding the evolution of poly-ADP-ribose family of proteins, classified organisms into two clades based on *VPARP* sequences (Citarelli et al. 2010). The analysis was extended by including more sequences and explaining the phylogeny in the context of origin of vaults. *VPARP* has been known to interact with the N-termini of *MVP* with its C-terminal binding domain (1562-1724 aa) (van Zon et al.
This minimum interaction domain (mINT) binds to MVP on the inner vault surface and when this region was excluded, it was shown that VPARP remains in the soluble fraction and cannot be packaged into intact vault particles (Kickhoefer 2005; Goldsmith et al. 2009). Unlike MVP, homologs of VPARP had a limited phylogenetic distribution. Except for slime molds and Capsaspora owczarzaki, homologs of VPARP were not found in any of the unicellular organisms including choanoflagellates, ciliates, kinetoplastids or bacteria. This suggests that the VPARP co-evolved along with MVP from a common ancestor of unikonta comprising the opisthokonta and amoebozoans, but was lost in clades representing fungi and nulcearids. It was also noticed that while the vertebrates had good conservation through the length of the sequence, other organisms showed very poor similarities beyond position 1200 corresponding to human VPARP protein sequence. This trend was observed throughout the invertebrate and unicellular sequences. Interestingly, multiple homologs of VPARP of different lengths in the invertebrates including sea urchin, sea anemone and oyster, the placozoan Trichoplax and the opisthokont Capsaspora were observed. The homologs from each of the above-mentioned organisms could not be successfully mapped onto the genome, since information on complete genome assembly is not available. One of the homologs from sea anemone and Capsaspora lacked the PARP-like domain and hence was dismissed from analysis, along with the Trichoplax homolog that was smaller and hence likely does not represent a full-length protein. Of the two full-length homologs identified in sea urchin and oyster, the true VPARP homolog could not be clearly distinguished and hence both were retained for analysis. The invertebrate sequences, in many cases, were
predicted by conceptual translation from genomic scaffolds. Whether the multiple homologs truly represent alternative splice forms of the same protein, or if they actually belong to different genomic loci and code for different proteins or if they are an artefact due to inclusion of intronic or other non-exonic regions in some of the annotated proteins is unclear.

From the unrooted ML tree a clear delineation of the vertebrates and invertebrates is evident (Figure 3.8). *C. owczarzaki* distinctly separates out from the metazoans, while the molds cluster together to form a separate clade. While the two sea urchin sequences included in the analysis clustered into a single clade, the position of the oyster sequence is ambiguous, as one of them clusters with other invertebrate sequences and the other branches out separately. Although, *C. owczarzaki* and choanoflagellates, both are considered to be the closest unicellular relatives to multicellular metazoans, there are no homologs of *VPARP* in choanoflagellates. This suggests that *VPARP* originated in a common ancestor prior to the divergence of *C. owczarzaki* from choanoflagellates and metazoans, but may have been lost in the choanoflagellate lineage.
Figure 3.8 Evolutionary origin of VPARP
ML tree describing the evolutionary origin of vault poly-ADP ribose polymerase (VPARP) across all the taxa. The bootstrap consensus topology was obtained based on the JTT+G+I model of evolution. The clade “Mammals” is representative of 24 organisms. The ‘_’ implies that the depicted branching was not reconstructed by the NJ method. The Capsaspora clearly clusters out from the common ancestor of metazoans. The placement of the amoebozoans as out-group to the clade Filozoa that includes Capsaspora, choanoflagellates and all metazoans is strongly supported. The branching within the invertebrates remains poorly resolved. The placement of one of the C. gigas homolog is likely a long-branch attraction artifact. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods. Values are given for all other nodes supported by >70% bootstrap support in either of the methods. The branch length is directly proportional to the number of substitutions per site.

The phylogenetic distribution of TEP1 using the human protein sequence as a query revealed that the span of organisms was almost similar to VPARP except there are no orthologs of TEP1 in birds and in the hemichordate Saccoglossus (). Homologs of TEP1 in both C. owczarzaki and choanoflagellate were found, suggesting a similar origin to that of VPARP. While the C. owczarzaki aligns through the length of the sequence, the choanoflagellate M. brevicollis was found to align only in parts.
Figure 3.9 Evolutionary origin of TEP1
(Top) ML tree describing the evolutionary origin of TEP1 across all the taxa retrieved. The bootstrap consensus topology was obtained based on the WAG+G model of evolution. The grey box points to the long branching sequences that are not likely to represent true TEP1 homologs due to their incorrect placement on the evolutionary tree. (Bottom) The bootstrap consensus topology was obtained based on the JTT+G+I model of evolution. The long branching O. dioica, Trypanosoma and M. brevicollis sequences have been removed. The clade “Mammals” represents sequences from 22 organisms. The ‘_’ implies that the depicted branching was not reconstructed by the NJ method. The placement of Capsapsora and amoebzoans with respect to metazoa is similar to that of VPARP. Black diamond indicates 100% bootstrap support for the indicated node by both ML and NJ methods. Values are given for all other nodes supported by >70% bootstrap support in either of the methods. The branch length is directly proportional to the number of substitutions per site.
TEP1 homologs were found in Trypanosoma, but not in Leishmania, albeit with poor amino acid conservation and alignment. To identify if the choanoflagellate and Trypanosoma sequences are true homologs, an initial ML tree was constructed. The unrooted tree identified that these sequences along with the sequence from O. dioica form exceptionally long branches. Hence, these sequences were removed and the ML tree was reconstructed. The topology was similar to that of the VPARP unrooted tree with C. owczarzaki grouping out of the metazoans and molds forming a distinct sister clade.

Vault isolates from sea urchin have identified heavy molecular weight bands around 200 kDa that might correspond to TEP1 and VPARP, and associated vRNA (Stewart et al. 2005). However, vaults isolated from Dictyostelium show no evidence of vault-associated proteins (Kedersha et al. 1990). From this observation it is likely that the association of minor vault proteins within vault complexes could have evolved with the origin of multicellular eukaryotes.

3.3.5 Organisms with MVP are mostly Heterotrophic

The phylogenetic distribution of vault genes forms a unique pattern, wherein some distinct eukaryotic branches corresponding to plants and fungi are missing. From a broad glimpse at the species distribution of vaults, it is seems that vault genes are present only in heterotrophs and absent from autotrophs including plants and fungi. The only outlier in the list of organisms is the cyanobacterium, Moorea producens 3L. Hence, the amino acid biosynthetic pathway of each species included in the phylogenetic analysis
was analyzed, focusing on the metabolism of the nine essential amino acids. The pathway data for each organism was accessed in the KEGG Pathway database. Interestingly, almost of the eukaryotes had incomplete pathways for the synthesis of the nine essential amino acids – Leu, Val, Ile, Lys, Met, His, Thr, Phe, Trp. All the eukaryotic organisms had important enzymes missing for the synthesis of branched chain amino acids, namely, Leu, Val and Ile. In addition, the synthetic pathways of the aromatic amino acids, Phe and Trp, were also incomplete in all the eukaryotes analyzed (Figure 3.10). The unicellular choanoflagellate has retained the enzymes involved in the synthesis of Met and His, but has lost the ability to synthesize other essential amino acids. Other single celled protists including the *Dictyostelium* and the organisms that may have horizontally acquired MVP including kinetoplastids, *Phytophthora* and organisms within the ciliate clade also display similar nutritional demands. While the kinetoplastid *Trypanosoma* has lost its ability to synthesize Met, another kinetoplastid *Leishmania* has Met biosynthetic enzymes intact. It is interesting to note that *Phytophthora* that are closer to plants also lack enzymes for synthesis of certain essential amino acids.

The pathways corresponding to amino acids regarded as conditionally essential, including Pro and Arg, were also analyzed for the enlisted organisms. All organisms could synthesize Pro except for the ciliate *Paramecium*. It was observed that in all deuterostomes, cnidarians and the placozoan *T. adherans* the enzymes for the biosynthesis of Arg were intact; however in the unicellular protists, including the choanoflagellate, Arg had to be supplemented in diet.
The heterotrophic gliding bacterial species, which may have acquired vault genes from eukaryotes, also have amino acid nutritional requirements. Out of the nine essential amino acids analyzed, the *C. coralloides* can only synthesize Met, Thr and Lys. The multicellular filamentous *S. grandis* has an intact biosynthetic pathway for only Thr and it needs to prey on other protists to meet its nutritional needs. The *F. litoralis*, however, can synthesize two branched chain amino acids, Val and Ile, in addition to His, Thr and Met. The amino acid synthetic pathway information corresponding to *M. producens 3L*, *P. pacifica* and *M. marina* were not available on KEGG and hence, ortholog enzymes that render the amino acid biosynthetic pathway complete was identified using protein BLAST search. The enzymes from myxobacterium *Sorangium cellulosum* was used to seed for *P. pacifica* orthologs. The filamentous cyanobacterium *Trichodesmium erythraeum*, which is closely associated with *M. marina*, was used to identify orthologous enzymes from both *M. producens 3L* and *M. marina* (Hopkinson et al. 2008; Jones et al. 2011). It was identified that Trp, Phe and Lys are essential in both the marine bacterium and *P. pacifica*. In addition, *P. pacifica* also lacked certain key enzymes involved in the synthetic pathways of Met and His. The two organisms analyzed indirectly may have incomplete biosynthetic pathways for other amino acids as well, since the identified enzyme orthologs more often displayed poor conservation through the length of the protein.

The autotroph *M. producens 3L*, on the other hand, has orthologs for all the key enzymes involved in synthesis of essential amino acids except for Met. This cyanobacterium is unable to fix nitrogen and relies on recycling its internal sources of carbon and nitrogen, particularly, cyanophycin, a storage
polymer, made by non-ribosomal peptide synthesis, of Arg and Asp, for its energy needs (Jones et al. 2011).

Figure 3.10 Analysis of essential amino acid biosynthetic pathways across all organisms that harbor vault homologs

Amino acids marked with ‘*’ point to conditionally essential amino acids. Dark Blue coloring indicates that the enzymes leading to synthesis of a particular amino acid are missing and that the amino acid is therefore essential. Orange coloring indicates amino acids that can be synthesized by the organism. White areas denote that the data was unavailable in KEGG for the particular organism. For *P. pacifica*, *M. marina*, *M. producens 3L*, the presence of enzyme orthologs for the synthesis of each amino acid was accounted for based on a protein homology search (for further details, see main text). *Saccharomyces* is included as a control organism that can synthesize all amino acids.
In addition, other protists including ciliate *Tetrahymena thermophila*, apicomplexan *Toxoplasma gondii* (both belong to alveolates), excavate *Trichomonas vaginalis* and also *Entamoeba histolytica* (amoebzoan) that do not harbor vault genes were also analyzed (Figure 3.11). The analysis revealed that these protists also display defects in essential amino acid biosynthesis and hence are heterotrophic protists. This leads to the conclusion that while all organisms carrying vault genes display loss of amino acid biosynthetic capability (except for cyanobacterium), not all heterotrophic protists have vault genes. The selective emergence of vaults in many of these heterotrophic protists including *Paramecium* and Kinetoplastids reiterates the notion that these protists acquired vaults by horizontal gene transfer from their environment.

![Figure 3.11 Amino acid synthesis analysis on other eukaryotic protists](image)

Figure 3.11 Amino acid synthesis analysis on other eukaryotic protists

The closely branching organisms that do not have vaults but branch closely to those eukaryotic protists that harbor vault genes were subjected to similar pathway analysis. Amino acids marked with "*" point to conditionally essential amino acids. Dark Blue coloring indicates that the enzymes leading to synthesis of a particular amino acid are missing and that the amino acid is therefore essential. Orange coloring indicates amino acids that can be synthesized by the organism. White areas denote that the data was unavailable in KEGG for the particular organism.
3.4 Discussion

Vaults are known to be conserved in a wide range of eukaryotes; however, their absence in distinct eukaryotic branches including plants, fungi, nematodes and insects has always been a puzzling aspect in understanding the evolution of vaults. The analysis on the evolution of vaults and its components sheds light on its unique phylogenetic distribution. Based on the conclusions made an evolutionary model that depicts the possible evolutionary timeline for the origin of vaults and their subsequent phylogenetic distribution has been proposed (Figure 3.12)

From the phylogenetic distribution it is clear that vaults are present only heterotrophs that lost certain key enzymes pertaining to synthesis of essential amino acids. Loss of amino acid biosynthetic capability occurred independently across different lineages over the course of evolution. Interestingly, fungi that are closely related to metazoans have no vault genes; yet, retain all enzymes essential for amino acid biosynthesis. A more reasonable interpretation, based on evolutionary reconstructions, would be that MVP, VPARP and TEP1, all co-evolved together in an ancestral unikont that evolved independently into the amoebozoans and opisthokonta clade and was subsequently lost in the fungi, nucleariida and also in class Icthyosporea. This common ancestor may have had enzymes for synthesis of amino acids intact. However, during course of evolution, as it diverged into organisms representing metazoans or choanozoans, the presence of vault genes may have compensated in some way for the subsequent loss of amino acid biosynthetic capability. However, the autotrophic fungal clade with no selective pressure to retain vault genes underwent a secondary loss.
It is interesting to note that even organisms that acquired vault genes by lateral gene transfer events, including certain heterotrophic bacteria with gliding motility, display defects in synthesis of essential amino acids. It is known that adaptation to specific environments is a major trigger for horizontal gene transfer events. Different eukaryotic lineages can independently acquire the same beneficial gene under certain circumstances. The horizontal gene transfers that contribute significantly to protist genomes are attributed to the phagotrophic or parasitic lifestyle of the organisms involved (Nosenko and Bhattacharya 2007). Not just the protists, even the bacterial xenologs that acquired vault gene have a lifestyle akin to those of slime molds and occupy similar niches. They also form multicellular aggregates under starvation. This reiterates that these organisms may have been succumbed to some selective pressure that led to the acquirement of genes from organisms that ancestrally harbored vault gene.

While vaults are observed in only heterotrophic organisms, there is one autotrophic cyanobacterium that harbors a clear conserved MVP homolog. An early eukaryotic MVP may have been acquired by Moorea producens 3L. Alternatively, MVP originated in older filamentous cyanobacteria and was acquired by an ancestral single celled eukaryotic heterotrophic unikont, which also lost its core amino acid biosynthesis pathways. The key question is - In which direction did this obvious horizontal transfer occur?
Figure 3.12 Proposed evolutionary model for the origin of Vault Complex

The MVP gene harboring organisms are indicated with colored circles. The organisms are grouped according to well-established evolutionary relationships. The emergence of MVP in the Unikont clade comprising the Opisthokonts and Amoebozoa is depicted with the orange diamond. MVP could have originated in a non-nitrogen fixing cyanobacterium that recycles amino acids and been transferred to an ancient unikont ancestor. The minor vault proteins, VPARP and TEP1 also emerged in the Unikont clade and co-evolved with MVP as depicted with blue diamond. vRNA evolved later in deuterostomes as shown as yellow diamond. The clades Excavates, Plantae, Chromalveolates together comprise the Bikonts. The specific group of bacteria with gliding motility, Kinetoplastids, Paramecium, Naegleria and Phytophthora, all have acquired MVP gene through horizontal gene transfer events.
Bacterial species seem less capable of evolving complex multi-domain proteins like MVP, however filamentous cyanobacteria like *Moorea producens 3L* are an exception, with domain-shuffled polyketide synthetases/non-ribosomal peptide synthetases, as well as abundant recombination and DNA repair enzymes (Jones et al. 2011). So MVP could have very well originated in such an organism, as mechanisms for domain duplication and shuffling are well supported. Vaults likely originated with a simple MVP gene in such an ancestral cyanobacterial species through the selective pressure of loss of nitrogen fixation process; a pressure which has most certainly influenced other genes and gave rise to complex strategies in *M. producens 3L* for amino acid storage. Therefore it should not be surprising that a long multidomain repeat protein like MVP could have emerged in such a cyanobacterial lineage, perhaps simply as a conventionally transcribed amino acid storage molecule. MVP may have been later acquired in a fully formed state by a cyanobacterium-feeding single-celled eukaryote through horizontal transfer from an ancestral cyanobacterium that lost nitrogen fixation. The acquisition of a cyanobacterial MVP may have helped complement the subsequent loss of amino acid biosynthesis genes in the heterotrophic eukaryote.

MVP knockout studies performed in multicellular eukaryotes have revealed no obvious phenotypic changes except under nutritional stress conditions (Vasu and Rome 1995; Mossink et al. 2003; Sutovsky et al. 2005; Kolli et al. 2004). The correspondence of vaults with both lost essential amino acid biosynthetic capability and lost nitrogen fixation capacity, and the exclusion of vaults in cases of amino-acid synthesizing intracellular endosymbiosis, suggests that the function of vault may be most simply related
to metabolism of amino acids. This reiterates that vaults may have an important but overlooked role to play in cell survival under stress and starvation conditions.

Within the multicellular metazoans, it is observed that vault genes have been specifically lost in the ecdysozoan protostomes. Although insects and nematodes lack amino acid synthesis genes, they often have widespread and evolutionarily ancient relationships with obligate intracellular endosymbiotic bacteria like *Buchnera* and *Wolbachia*, which are an internal source of essential amino acid synthesis. Primary obligate endosymbionts have been associated with their insect hosts for millions of years and co-speciated with their insect hosts (Douglas 1998; Wernegreen 2002). The intracellular endosymbionts may compensate for the nutritional requirements in ecdysozoan protostomes. In the Lophotrochozoan mouth- and gut-less annelid tubeworm *Riftia pachyptila*, it was found that *MVP* mRNA is conspicuously and completely down-regulated in the specialized tissue trophosome that harbors nutrient providing intracellular endosymbionts (chemolithoautotrophic *γ- Proteobacterium*) but remains enriched in the branchial plume that is involved in exchange of metabolites with environment (Sanchez et al. 2007). It is interesting that though vaults and intracellular endosymbiosis are found in the same organism they remain segregated in different tissues and appear to be mutually exclusive.

The notion of horizontal gene transfer events into specific organisms in bikonts is also supported by missing sequences corresponding to *VPARP* and *TEP1* in these organisms as opposed to those of the opisthokonts and amoebozoans. It is also worth mentioning that the *VPARP* homologs from
unicellular organisms (along with those from invertebrates) are very different from their vertebrate counterparts and suffers from poor conservation through the length of the alignment, particularly along the mINT domain that is essential for interaction with MVP monomers. Therefore, it is not very clear if they are capable of being enclosed within the vault complex. Interestingly, both the minor vault genes are present in Capsaspora that diverged prior to that of choanoflagellates and metazoans, but have been specifically lost in choanoflagellates indicative of a lineage specific gene loss.

The results from the phylogenetic reconstructions shed light on the evolutionary history of the vault complex, alongside the minor vault components. Appearance of vault genes in independent lineages of heterotrophs with lost amino acid biosynthetic capability suggests a possible and convincing correlation between amino acid heterotrophy and vaults. The absence of vaults in fungi or ecdysozoan protostomes is likely compensated by amino acid availability either by intact biosynthetic pathways or through beneficial intracellular endosymbiosis. The puzzling phylogenetic distribution and selective occurrence in a few species of unicellular protists is parsimoniously explained as a horizontal gene transfer event that may have occurred due to selective pressure in adapting to specific nutrient niches where the gene was available. Based on the provided evidence it is reasonable to speculate that function of vault may be related to basal heterotrophic nutrient requirements.
Chapter 4

The Medium is the Message – Vaults as Nutrient Sequesters

4.1 INTRODUCTION

The detailed phylogenetic reconstruction tracing the evolutionary history of the vault complex reveals a connection between heterotrophy and vaults. While the phylogenetic analysis distinctly points to the emergence of vault in a single-celled eukaryotic ancestor of unikonts, the specific loss of vault genes in autotrophic fungi is interesting. Even organisms which possibly acquired vault later by horizontal gene transfer events, including ciliates, *Paramecium* and also specific species of gliding bacteria, are compromised in their ability to synthesize amino acids, especially branched chain amino acids Ile, Val, and Leu. Thus it seems possible that the function of vaults may have compensated for the loss of amino acid synthesis in heterotrophic eukaryotes and autotrophic organisms including plants, algae and fungi did not display any selective pressure to retain vault genes and hence, lost it through evolution.

Proteins, apart from playing their specific cellular functions, also provide valuable amino acids once they are recycled. The cellular system represents dynamic machinery as opposed to a static system, where new
organelles and proteins are constantly being synthesized while the old ones are being recycled from time to time. Autophagy, in particular macroautophagy, is an evolutionarily conserved self-digestive and recycling process in all eukaryotic cells, whereby the cells degrade older proteins and organelles to promote cell survival (Klionsky and Emr 2000). The process is more pronounced during limiting nutrient conditions, when the bulk of old proteins are recycled and the resulting amino acids are released back into the cytosol. Autophagy is known to be up regulated following nitrogen starvation in many multicellular eukaryotes from yeast through mammals (Mizushima 2007). Autophagy also plays a major role in starvation-induced development of the social amoeba Dictyostelium (Otto et al. 2003). Defects in autophagy have been implicated with many physiological conditions including cancer, neurodegeneration and infections (Mizushima et al. 2008; Amano et al. 2006). While the evolutionarily evolved autophagic process promotes cell survival in most cases, autophagy induced cell-death has also been reported.

While most mammalian tissues reach autophagic maxima within 24 hours, brain tissue does not exhibit autophagy even after 46 hours of nutrient starvation. Autophagy is also pronounced in embryos where degradation of maternally derived proteins provides energy and nutrients for development (Tsukamoto et al. 2008; Tsukamoto et al. 2008). Though autophagy-deficient mice appear normal during birth, they are marked by dramatically reduced amino acid profiles in plasma and other tissues as early as 10 hours within birth and display higher mortality rates (Kuma et al. 2004). This emphasizes that amino acids degraded from the bulk of tissue proteins serve as prime
energy sources during early phases of development (Onodera and Ohsumi 2005).

It is known that vaults are highly expressed in developing embryos and also during other physiological conditions involving cancer, infection or neurodegeneration. As mentioned above, all of these conditions involve autophagy and mobilization of amino acids derived from degraded proteins (Mizushima and Klionsky 2007). Are the elevated levels of vaults in highly autophagic tissues merely coincidental? Or is there a relationship between the large numbers of polymerized amino acids in vaults and autophagic turnover?

In higher eukaryotes, the liver serves as the prime organ of protein metabolism including assembly of new proteins and dismantling of the old ones to generate useful amino acids. Intriguingly, the liver can sense amino acid concentrations and efficiently trigger necessary catabolic or anabolic processes. Accordingly, a dramatic decrease in protein degradation rate from 4.5%/hr to 1.5%/hr has been reported in response to an increase in amino acid concentrations of up to tenfold (Schworer et al. 1981). Apart from protein catabolism, the liver also houses a bulk of glycogen, oligomerized glucose molecules, that represents secondary long-term energy storage. Vaults have been primarily isolated from and are also known to be enriched in livers. Given their massive size and protein content, could vaults have evolved as nutrient (amino acid) stores and represent a form of secondary storage for polymerized amino acids?

In this chapter, the possibility of vaults functioning as a nutrient store has been analyzed by using a combination of compositional and theoretical metabolic analysis. Also, experimental evidence pertaining to vault expression
and expression profiles of vaults in several microarray experiments are re-analyzed in light of a proposed nutrient storage function.

4.2 RESULTS

4.2.1 Conserved compositional bias of MVP and vRNA

Regions that define folded protein domains or non-structural linkers in a structural protein are marked by distinct bias in their amino acid compositions. This has been established previously by Dumontier et al. based on analysis of a large number of crystal structures (Dumontier et al. 2005). A protein domain is most likely expected to fit into the amino acid compositions defined for folded and linker region depending on its structure. Interestingly, comparison of this expected ‘folded’ protein composition to MVP, revealed an excess of Glu, Val and Gln, and elevated amounts of Leu, Pro and Arg (Figure 4.1A). The compositional bias appears to be a consequence of the unique vault structure. The cap region is Glu rich, and the waist is Glu + Val rich. Val residues play an important structural role in the stable interface between the cap helices. The long cap helix has no helix-breaks or turns, which may explain its simpler composition as against a folded domain. Consistent with this view, the long cap helix has a narrow amino acid composition with high numbers of Ala, Ser, Glu, and Gln residues.

From the phylogenetic analyses discussed in the previous chapter, it is evident that vault genes are conserved across a wide range of eukaryotes. Some species have acquired full length vault genes by horizontal gene transfer events and have undergone lineage-specific paralogous expansion. To determine if the observed compositional bias is conserved across all phyletic groups harboring vault genes, the sequence composition of vaults was
analyzed across all the taxa. With over seventy-five amino acid sequences for MVP analyzed, it is shown that this amino acid bias is conserved across the phylogeny, with minor variations expected due to environmental conditions and G+C content.

A vRNA bias towards U, G and C was originally reported by Rome, and the expression of vRNA is reported to be elevated during Epstein-Barr virus infections by almost 1000 fold (Kedersha and Rome 1986; Kickhoefer et al. 1996; Nandy et al. 2009). A comprehensive collection of computationally predicted vRNA sequence dataset has been previously reported (Stadler et al. 2009). The nucleotide bias of vRNA across this dataset was analyzed and compared against basal genome compositions in organisms predicted to harbor vRNA genes (Table 4.1). Basal genome compositions were computed on downloaded complete genome assembly data for each organism from the UCSC Genome Bioinformatics database. Based on the analysis, it was found that the U+G+C bias of vRNAs in mammals scores about 85.2% to that of basal eukaryotic genome composition of around 66.6%. The difference between the vRNA and basal eukaryote genome compositional bias was also pronounced in other groups – tetrapods, teleosts and basal deuterostomes.

Akin to the paralogous expansion of MVP genes, the vRNA genes also seem to have duplicated into pseudo genes. Interestingly, the increased bias in nucleotide composition seems to be compromised in the pseudo genes (Table 4.2). Out of the 7 predicted vRNA pseudo genes, U+G+C percentage is lower compared to that of functional vRNAs in 5 genes, suggestive of a possible evolutionary pressure that maintains the vRNA sequence bias. Remarkably, a compositional enrichment of amino acids and nucleotides is evident for both
MVP and vRNA, respectively, as evolution proceeded from sea to land (Figure 4.2). This result indicates that vault contains two evolutionarily conserved and distinctly compositionally biased biopolymers: a protein MVP and a nucleic acid vRNA.

<table>
<thead>
<tr>
<th>Organism</th>
<th>vRNA (%)</th>
<th>Genome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>85.51</td>
<td>65.57</td>
</tr>
<tr>
<td>Pan troglodytes</td>
<td>86.57</td>
<td>60.84</td>
</tr>
<tr>
<td>Pongo pygmaeus</td>
<td>85.66</td>
<td>63.15</td>
</tr>
<tr>
<td>Macaca mulata</td>
<td>85.79</td>
<td>65.05</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>79.58</td>
<td>68.254</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>84.62</td>
<td>64.26</td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td>89.3</td>
<td>68.43</td>
</tr>
<tr>
<td>Otocylotagus cuniculus</td>
<td>83.76</td>
<td>68.4</td>
</tr>
<tr>
<td>Equus caballus</td>
<td>83.41</td>
<td>70.33</td>
</tr>
<tr>
<td>Canis familiaris</td>
<td>86.73</td>
<td>66.127</td>
</tr>
<tr>
<td>Bos taurus</td>
<td>85.42</td>
<td>66.37</td>
</tr>
<tr>
<td>Loxodonta africana</td>
<td>85.61</td>
<td>68.65</td>
</tr>
<tr>
<td>Dasypus novemicinctus</td>
<td>85.44</td>
<td>70.01</td>
</tr>
<tr>
<td>Monodelphis domestica</td>
<td>83.93</td>
<td>66.93</td>
</tr>
<tr>
<td>Ornithorhynchus anatinus</td>
<td>87.25</td>
<td>67.12</td>
</tr>
<tr>
<td>Other Tetrapods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenopus tropicalis</td>
<td>81.08</td>
<td>62.88</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td>86.57</td>
<td>67.06</td>
</tr>
<tr>
<td>Teleost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danio rerio</td>
<td>79.3</td>
<td>68.06</td>
</tr>
<tr>
<td>Oryzias latipes</td>
<td>82.04</td>
<td>56.6</td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td>87.33</td>
<td>69.7</td>
</tr>
<tr>
<td>Takifugu rubripres</td>
<td>82.65</td>
<td>63.78</td>
</tr>
<tr>
<td>Tetraodon nigroviridis</td>
<td>88.37</td>
<td>61.7</td>
</tr>
<tr>
<td>Basal Deuterostomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petromyzon marinus</td>
<td>82.96</td>
<td>59.28</td>
</tr>
<tr>
<td>Ciona intestinalis</td>
<td>80.83</td>
<td>63.32</td>
</tr>
<tr>
<td>Branchiostoma floridae</td>
<td>81.51</td>
<td>64.99</td>
</tr>
<tr>
<td>Strongylocentrotus purpuratus</td>
<td>78.89</td>
<td>61.2</td>
</tr>
</tbody>
</table>
4.2.2 **MVP is a Unique Protein with High CAI**

Translational efficiency, an important measure of protein expression within cells, depends on efficient use of codons. A significant correlation between mRNA levels and codon bias has been established in literature (Tuller et al. 2010). Codon bias corresponds to the differential usage of synonymous codons based on levels of corresponding tRNAs. Proteins that are efficiently translated and expressed at elevated levels have the optimal codons that are recognized by an abundance of corresponding tRNA and are marked by high Codon Adaptation Index (CAI). The human MVP that is expressed in many cell types has a high CAI of 0.78 correlating with high copy numbers of vaults observed in purifications. (Sharp and Li 1987; Kedersha and Rome 1986).

Apart from its abundant expression, vaults have also been reported to undergo turnover or degradation during various cellular conditions including interferon-gamma induction, embryonic development or following an axonal accumulation. The vault particle can be broken down into its constituent amino acids via ubiquitin-mediated proteasomal proteolysis or lysosome-mediated autophagy which consequently releases its ribonucleotides (vRNA) (Kedersha et al. 1990; Mortimore and Pösö 1987; Sutovsky et al. 2005). Given
that naturally occurring vaults are polymerized structures constructed from 78 copies of \textit{MVP} and also harbor few copies of minor vault constituents, an intact vault complex is a huge store of entrapped amino acids. With nearly 100,000 amino acids in a single vault complex and high reported copy numbers, the metabolic fate of degraded vault is significant because concomitant increases in \textit{MVP} transcription, translation and turnover have also been observed (Steiner et al. 2006; Li et al. 1999). Taken in combination, these simultaneous increases in transcription, translation and turnover would represent a futile metabolic cycle of amino acid/ribonucleotide polymerization and release. In the absence of a clear distinct cellular function for vaults, the futile cycle itself could prove useful in controlling the concentrations of the free amino acid pool within the cell.

Any protein could essentially be turned over to derive useful amino acids to combat cellular stress. But what makes Vaults special? The most straightforward reason is its amino acid content and high copy numbers within cells. The vault composition bias is towards amino acids that are most readily utilized as nutrients in metabolism, with close to 50% contributed by Glu, Gln, Arg, Pro, Leu and Val. These amino acids could be routed through various metabolic pathways for cellular energy or may serve as precursors for synthesis of other useful molecules. The biased amino acids in vaults, Arg, Pro and Gln, can be efficiently converted into Glu and enter the tricarboxylic acid (TCA) cycle (Owen et al. 2002). Amino acids including Glu, Asp and Arg also serve to be important as neurotransmitters and are found in excess at axon terminals.
The compositional bias and CAI as a function of protein length was plotted for all annotated human protein coding sequences from the NCBI Consensus CDS protein data set (Figure 4.1B). Remarkably, MVP is one of the two proteins (the other being CARD10, a caspase recruitment domain family member 10 protein with a known function) that holds a nutritional amino acid bias in combination with a high CAI, and at the same time forms a large, stable and folded protein with no large regions of low complexity sequence and no intrinsically disordered regions. Naturally all proteins can be recycled but the observed bias in amino acid composition complemented with a high CAI appears to be a rare combination and makes MVP unique as a molecule. Also, the fact that it polymerizes into a stable and neutral macromolecular structure makes it an ideal storehouse of nutrient amino acids.
Figure 4.1 Conserved compositional bias of MVP protein

(A) Composition of vault and vault genes compared to the average composition for folded proteins (FOLD) and unstructured linker regions (LINKER) (Dumontier et al. 2005). Amino acids are shown in clockwise order sorted from highest to lowest composition from the FOLD set, which appears as a smooth blue spiral starting at the top and going clockwise towards the centre. The human vault particle composition is estimated by including 78 copies of MVP, 12 copies of VPARP and 3 copies of TEP1. MVP exhibits higher than expected Leu, Val, Glu, Gln, Arg and Pro compared to FOLD, LINKER and actin (control). (B) Composition bias (EQPVRL Percentage) compared against Codon Adaptation Index (CAI) and length for all human protein coding regions obtained from the CCDS database. MVP is in yellow. Red represent sequences with length >600 amino acids, equal or higher CAI and compositional bias than MVP with significant low complexity regions (LCR). Blue and orange represent sequences that are similar in CAI and composition, but smaller than MVP (300-600 amino acids and less than 300 amino acids, respectively). The remaining proteins are represented by green dots.
Compositional enrichment of vaults through evolution
Compositional enrichment of (A) U+G+C content in vRNA and (B) amino acids Glu, Gln, Pro, Val, Leu and Arg in MVP as organisms evolved from sea to land. Only deuterostome sequences were considered for this analysis. Also, (A) shows compositional enrichment of true vRNA compared with vRNA pseudogenes. For (B) only full length MVP sequences were used.

4.2.3 Recycling Vaults – A Reserve of Useful Precursors

Maintenance of cellular energy is an important determinant that controls cell growth and proliferation. However, during cellular stress, particularly starvation response, balancing cellular energy to promote cell survival becomes a challenging task. The cell tackles starvation primarily by burning its glucose and fat reserves. The glycogen reserves in muscles and liver cells come handy during this process. But during prolonged starvation, the cell resorts to breaking down proteins in muscles and other tissues to derive useful cellular energy, primarily by autophagy. The process is initiated when a portion of the cytoplasm is sequestered into a double-membrane structure called the autophagosome and fuses with a lytic compartment that
hosts materials to be degraded. It has been known that mature ribosomes also undergo rapid degradation upon nutrient starvation in yeast by a process termed ribophagy, a type of selective autophagy (Kraft et al. 2008). Other than autophagy, the ubiquitin-proteasome system can also rapidly degrade proteins when fast adaptation is needed. The turnover of vaults by such a mechanism has already been established in developing embryo (Sutovsky et al. 2005).

Vaults, being present in high copy numbers, particularly in metabolically active cells, could potentially serve as an energy reserve in response to various cellular stimuli including stress and nutrient starvation. Since the MVP-knockout models display no apparent phenotype and vaults are considered not essential for normal physiological functions, bulk degradation of vaults may not affect normal cellular functioning but could serve to provide a lot of amino acids within the cells. It has been well-established that amino acids can serve as a direct energy source for the cell and can also drive gluconeogenesis. It has also been established that vaults dissociate at low pH suggesting that the acidic nature of the lysosomes could trigger the process (Goldsmith et al. 2007). Hence, it could be speculated that vaults are engulfed into such lytic compartments and subjected to degradation.

To mimic such a process and account for the usability of vaults as a direct energy source or as precursors for important metabolic reactions, theoretical metabolic degradation of vaults and their constituent amino acids was performed. All the amino acids were subjected to canonical degradation pathways and the end products were routed through various metabolic pathways to determine the theoretical energy equivalent of one vault particle. This theoretical study assumed complete degradation of all amino acids
constituting the vault complex. The total amino acid count for one vault complex takes into consideration 78 copies of MVP, 12 copies of VPARP and 3 copies of TEP1 (Table 4.3). The exact copy numbers of VPARP and TEP1 within intact complexes remain unknown and hence, the indicated values are estimates (Anderson et al. 2007). The details of the theoretical metabolic degradation and routing of vault amino acids through the various catabolic or anabolic pathways are detailed in Appendices.

Table 4.3 Amino Acid compositions of MVP chain and structured Vault Complex

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>1 MVP</th>
<th>78 MVP Chains</th>
<th>Composition of MVP</th>
<th>1 Vault Complex</th>
<th>Composition of Vaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>6240</td>
<td>8.96</td>
<td>8106</td>
<td>8.25</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>390</td>
<td>0.56</td>
<td>1002</td>
<td>1.02</td>
</tr>
<tr>
<td>D</td>
<td>49</td>
<td>3822</td>
<td>5.49</td>
<td>5241</td>
<td>5.34</td>
</tr>
<tr>
<td>E</td>
<td>86</td>
<td>6708</td>
<td>9.63</td>
<td>8760</td>
<td>8.92</td>
</tr>
<tr>
<td>F</td>
<td>26</td>
<td>2028</td>
<td>2.91</td>
<td>3189</td>
<td>3.25</td>
</tr>
<tr>
<td>G</td>
<td>58</td>
<td>4524</td>
<td>6.49</td>
<td>6117</td>
<td>6.23</td>
</tr>
<tr>
<td>H</td>
<td>18</td>
<td>1404</td>
<td>2.02</td>
<td>2208</td>
<td>2.25</td>
</tr>
<tr>
<td>I</td>
<td>35</td>
<td>2730</td>
<td>3.92</td>
<td>4053</td>
<td>4.13</td>
</tr>
<tr>
<td>K</td>
<td>43</td>
<td>3354</td>
<td>4.81</td>
<td>4992</td>
<td>5.08</td>
</tr>
<tr>
<td>L</td>
<td>92</td>
<td>7176</td>
<td>10.30</td>
<td>10542</td>
<td>10.73</td>
</tr>
<tr>
<td>M</td>
<td>9</td>
<td>702</td>
<td>1.01</td>
<td>1254</td>
<td>1.28</td>
</tr>
<tr>
<td>N</td>
<td>21</td>
<td>1638</td>
<td>2.35</td>
<td>2487</td>
<td>2.53</td>
</tr>
<tr>
<td>P</td>
<td>54</td>
<td>4212</td>
<td>6.05</td>
<td>5928</td>
<td>6.04</td>
</tr>
<tr>
<td>Q</td>
<td>55</td>
<td>4290</td>
<td>6.16</td>
<td>5808</td>
<td>5.91</td>
</tr>
<tr>
<td>R</td>
<td>65</td>
<td>5070</td>
<td>7.28</td>
<td>6315</td>
<td>6.43</td>
</tr>
<tr>
<td>S</td>
<td>38</td>
<td>2964</td>
<td>4.26</td>
<td>5571</td>
<td>5.67</td>
</tr>
<tr>
<td>T</td>
<td>44</td>
<td>3432</td>
<td>4.93</td>
<td>4983</td>
<td>5.07</td>
</tr>
<tr>
<td>V</td>
<td>91</td>
<td>7098</td>
<td>10.19</td>
<td>8841</td>
<td>9.00</td>
</tr>
<tr>
<td>W</td>
<td>7</td>
<td>546</td>
<td>0.78</td>
<td>918</td>
<td>0.93</td>
</tr>
<tr>
<td>Y</td>
<td>17</td>
<td>1326</td>
<td>1.90</td>
<td>1908</td>
<td>1.94</td>
</tr>
<tr>
<td>Total</td>
<td>893</td>
<td>69654</td>
<td>100</td>
<td>98223</td>
<td>100</td>
</tr>
</tbody>
</table>

4.2.3.1 Vault Amino Acids as Substrates for Gluconeogenesis

While glycogen serves as the primary reserve for glucose, nutrient deprivation leads to depletion of glycogen sources within one day. Hence, pyruvate or other tricarboxylic acid cycle intermediates in the liver are driven
into gluconeogenesis to maintain glucose homeostasis. A bulk of the vault amino acids, except for leucine and lysine, on complete degradation either form pyruvate or other important intermediates that could be efficiently routed via the tricarboxylic acid cycle (Appendices, Table A.1). Pyruvate or oxaloacetate can be shuttled into the gluconeogenesis pathway for production of glucose. Taking into account total energy required for degradation of each amino acid in vault and total energy required for routing the intermediates through the gluconeogenesis pathway, in terms of ATP and other energy carriers including NADH, NADPH and FADH$_2$, it is found that vaults can economically prime the synthesis of almost 44248 molecules of glucose with net ATP to spare. Molecular biology grade glycogen purified from oysters (Fermentas Inc., Canada) has a maximal molecular weight of about 8x106, comprising about 50,000 glucose molecules. Thus, these two particles are nearly equivalent in carbohydrate energetic value

4.2.3.2 ATP Equivalents Regenerated from a Degraded Vault Complex

Extending the above analysis and completely routing all the amino acid degradation products through pathways of tricarboxylic acid cycle and oxidative phosphorylation via electron transport chain, results in the formation of more than a million molecules of useful chemical energy in the form of ATP (Appendices, Table A.2).

4.2.3.3 Vaults as precursors for de novo Nucleotide Biosynthesis

De novo synthesis of nucleotides necessitates the involvement of Asp, Glu and Gly in several of the key reactions. A bulk of the vault amino acids including Gln, Glu, Pro and Arg could be converted into either Asp or Glu and
hence, be driven into the synthesis pathway. Cys and Ser could also be routed into the pathway once they are converted into Gly (Appendices, Table A.3 (Part 1). The *de novo* synthesis of both purine and pyrimidine involves the utilization of an activated sugar intermediate termed the 5-phospho-α-D-ribosyl 1-pyrophosphate (PRPP). While a subset of amino acids is directly involved in the de novo synthesis, the other amino acids can be efficiently routed for the synthesis of PRPP (Appendices, Table A.3 (Part 2). Such an efficient usage of amino acids in one vault particle could drive the synthesis of almost 9200 purine or 12500 pyrimidine skeletons theoretically (Appendices, Table A.3 (Part 3). Hypothetically speaking, the resources from about 5.6 x 10^5 vaults are sufficient to build an entire haploid human genome containing 3 billion base pairs. This appears to be also suited to scale, given the copy number of vaults reaching as high as 10^7 in embryos.

4.2.3.4 Assembling New Proteins from One Vault Particle

Protein recycling may become particularly important when nutrients are sparse and basal proteins promoting cell survival have to be constantly synthesized (Mizushima and Klionsky 2007). It has been established that the median length of eukaryotic proteins is about 361 amino acids (Brocchieri and Karlin 2005). Assuming assembly of average sized proteins with folded domain compositions, it is found that amino acids in vaults are capable of forming as many as 146 proteins and also provide for all the ATP required for protein translation machinery, including initiation, elongation, translocation and translation. (Appendices, Table A.4)

It is evident based on the current study that vaults display prime attributes to serve as a cellular energy reserve and could be regarded as a
dependable source for energy, amino acid and also for release of various other metabolic precursors during periods of cellular stress.

4.2.4 **Syntenic Conservation of MVP with BCKDK**

Comparison of entire genomes in charting the evolutionary history of eukaryotes, particularly mammals, has led to the identification of a limited number of syntenic segments. Syntenic segments, termed the ‘conserved linkage group’, are marked by regions of highly conserved gene orders in the chromosome (Kemkemer et al. 2009). These segments signify a selection pressure that has been active in maintaining the gene order among the different organisms over the years of evolution. The MVP gene maps to the 16p11.2 genomic locus. To screen if MVP is also subjected to such an evolutionary pressure and maintains a specific gene order with its neighbors, the chromosomal regions in as many as 16 genomes were compared. The genomic regions neighboring to MVP were scanned using the Ensembl Genome Browser. On analysis, it was found that the particular locus in which MVP is present is syntenically conserved across all mammalian genomes including platypus. However, the conserved gene order, centered on MVP, is lost in the chicken genome. Synteny analysis revealed that at least 83 genes from mouse and 93 genes from chimpanzee, shared a conserved specific gene order upstream or downstream of MVP. Interestingly, MVP is also syntenically conserved with gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) within this region. Branched Chain Ketoacid Dehydrogenase (BCKDH) complex is an important regulator of the branched chain amino acid (BCAA) catabolism. BCAA are indispensable amino acids and account for almost 40% of the total body weight (Shimomura et al. 2004). BCKDK
binding to the \textit{BCKDH} complex reduces breakdown of BCAA by inactivating the complex, thus increasing BCAA pool within the cell. The proposed nutrient synthesis-turnover function for vaults agrees well with the observed gene association of \textit{MVP} with \textit{BCKDK}. The activity of the \textit{BCKDH} complex is known to be up regulated during periods of nutritional stress to supply cellular energy. Conversely, amino acid deprivation enhances translation of \textit{BCKDK} to increase the BCAA pool (DOERING and DANNER 2000). Concerted gene regulation, in the form of a negative feedback, or functional complementation of \textit{MVP} and \textit{BCKDK} may potentially determine the amino acid concentrations, particularly BCAA, within cells.

\section{The overlooked vault function – Clues from expression patterns}

Over the years, vaults have been implicated in various cellular functions. However, describing one precise function that can clearly explain all the observed expression patterns has remained complicated. The existing data, when subjected to meaningful analysis, reveals several clues that seem to correlate with the proposed function of vaults as a nutrient absorption particle that could efficiently function in a synthesis-turnover based manner in response to various cellular stimuli and remain dormant or neutral under normal conditions. In this section, the expression pattern of vault in various tissues or cellular conditions has been re-analyzed in light of the proposed novel function. Vault expression data hidden in various microarray experiments has also been re-visited.
4.2.5.1 High Expression of Vaults in Nutrient Absorbing/Storage Tissues

Vault protein expression patterns in human tissues have been characterized previously using monoclonal antibodies (Izquierdo et al. 1996; Sugawara et al. 1997). The

MVP protein expression data was normalized and plotted along with observed

MVP mRNA expression profiles in tissues of mouse, rat and human, human, retrieved individually from NCBI GEO (Gene Expression Omnibus) database database (Su et al. 2002; Walker et al. 2004; Ge et al. 2005). On analyzing the pattern of pattern of expression, it was found that intestines consistently exhibited highest vault highest vault mRNA or protein expression across all the four independent datasets (Figure 4.3). Another microarray survey comparing expressions of mouse intestinal mesenchymal and epithelial cells reveals that

MVP mRNA expression is pronounced in intestinal epithelial cells as shown in Figure 4.6 (Li et al. 2007). Intestinal epithelial cells serve as prime sites for nutrient absorption and assimilation and the fact that

MVP expression is highest in the intestine and specifically elevated in the epithelial cells accentuates the role for vaults as important players in nutrient absorption. Transcriptional profile data of Zebrafish intestine reveals that expression of

MVP and VPARP is enriched in the anterior and middle intestine but fall rapidly towards the posterior end (Wang et al. 2010). The expression patterns of the vault genes also seems to follow trends displayed by other small molecule digestion and uptake genes including apoa1, vill, fabp2 among others (Figure 4.4). Thus, the expression evidence data indicates that vault particles are expressed to a greater extent in the vertebrate digestive tract, particularly in the absorptive
tissues of the intestine and also in the liver, where they may be involved in secondary storage.

Figure 4.3 Comparison of tissue expression of vault
Normalized graph of tissue specific expression levels of vault particles obtained from human tissue immunostaining (Sugawara et al. 1997) and mRNA expression of the MVP gene from three separate microarray surveys (Su et al. 2002; Walker et al. 2004; Ge et al. 2005). Unweighted averages of cell and tissue types belonging to a particular tissue are reported in cases where multiple samples or cell types were measured in the original study. Zero values reflect tissue results not available from the original dataset.
Figure 4.4 Expression of MVP and VPARP in Zebrafish intestine
Expression profiles of MVP, VPARP and other intestinal genes along the anterior-posterior intestine based on microarray results obtained from unpublished data from the NUS PhD thesis of Z. Wang (P. Matsuda and Z Gong labs). Magenta: Apoa1 - Apolipoprotein A-1; Yellow: Apoa4 - Apolipoprotein A-4; Green: VillI - Villin 1 Like protein; Blue: Rdhe2 - Short chain dehydrogenase/reductase family 16C, member 5; Black: Fabp2 - fatty acid binding protein 2, intestinal; Red: ZGC:110410 - similar to glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (GRINA, glutamate binding); Light Blue: VPARP – Vault Poly ADP Ribose Polymerase; Grey: MVP - similar to MVP isoform 1.

4.2.5.2 Starvation and Vaults – Clear Patterns from Dictyostelium
Early MVP gene knockout experiments in Dictyostelium discoideum revealed a clear nutrient defect phenotype (Vasu and Rome 1995). Dictyostelium undergoes starvation-induced differentiation, beginning with single-cells in the vegetative state which then progress through many stages to form a multicellular fruiting body. Macroautophagy is an important determinant controlling this multicellular development of Dictyostelium. Autophagy mutants displayed reduced bulk protein degradation during starvation-induced development (Otto et al. 2003). Vault protein expression has been examined during Dictyostelium differentiation, and was found to
decline from 0 to 34 hours after differentiation, with the latter time point corresponding to the terminal fruiting stage (Kedersha et al. 1990). The protein expression pattern was plotted alongside mRNA expression trend of MVP observed by transcriptional profiling (Figure 4.5). The two MVP genes, MVPA and MVPB genes are expressed in the vegetative state and subsequently down regulated at the onset of starvation-induced differentiation (Iranfar et al. 2003). Thus, the data from both the experiments suggest that Dictyostelium vault particles become more concentrated during vegetative growth and that starvation halts vault expression. Since Dictyostelium depends primarily on protein catabolism to support cell survival during starvation-induced development phase, it is reasonable to speculate that vaults may contribute to a bulk of the protein-turnover process considering the amount of useful energy that could be obtained by vault degradation.

In Dictyostelium, it is very well established that degraded amino acids function as substrates for the TCA cycle and provide energy as cells aggregate and form fruiting bodies (Shiraishi and Savageau 1993) Since differentiation in Dictyostelium results in the catabolism of about 50% of the cellular protein, the simplest explanation for the previously reported nutritional stress phenotype in Dictyostelium MVP A-/MVP B- knockouts is that the highly abundant vault particles function as feedstock proteins and offer valuable amino acids that could fuel differentiation and development.
Figure 4.5 Dynamics of *Dictyostelium* MVP expression at the transcript and protein levels

MVP A/MVP B mRNA expression (Iranfar et al. 2003) and vault particle expression approximated by pixel density counting from the western blot illustrated in Ref. (Kedersha et al. 1990) with the Unscan-IT-gel software (Silk Scientific Inc. Utah, USA). Time is counted after induction of differentiation at T=0 h. Vault particle western blot spot intensity is arbitrarily normalized to the value 2 at T=0 h.

A nutrient particle theory for vault function would imply that a vault-deficient *Dictyostelium* model would display defects in sequestering sufficient amino acids during vegetative phase and that it would have an adverse effect on cell survival during starvation-induced development stage. Consistent with this assertion, the *MVP A'/MVP B'* knockout model of *Dictyostelium* displayed reduced growth rate and reached final cell densities of one-half to one-third to those of wild-type cells (Vasu and Rome 1995). Interestingly, this defect in cell survival or the observed nutrient phenotype became apparent only when the cells were subjected to limited nutrient medium (starvation) as the *MVP*-knockout cells appeared to grow normally in nutrient rich medium. Similar
nutrient phenotypes have also been noted in $MVP^{+/}$ MEFs that display increased cell death on serum deprivation but show no obvious defects otherwise. (Kolli et al. 2004). While other more complex vault functions could explain the limited growth during nutrient deprivation, the current theory still proves consistent with an impaired nutrient uptake in MVP-deficient models. These studies also heighten the argument that phenotypes of vault knockout models become evident only during conditions of cell stress or starvation. This provides a reasonable explanation as to why most of the studies employing MVP-knockout models failed to see a clear phenotype.

4.2.5.3 Explore the Unexplored – Hidden Clues from Microarray Profiles

The gene expression profiles of MVP from various transcriptional profiling experiments were manually mined from the Gene Expression Omnibus (GEO) repository and analyzed in light of the proposed nutrient sequestration function of vaults (Figure 4.6 and 4.7). On analysis, it was found that MVP consistently displayed a higher percentile of expression when the study involved effects of nutrition or development. Consistent with the proposed function, transcriptome profiles of several studies pointed to low levels of MVP expression in muscles and liver on starvation. The differential expression profile of MVP in various tissues during a fasting response over various time points is illustrated below in Figure 4.6 (Hakvoort et al. 2011). A distinct upregulation of MVP in intestines even during starvation response is remarkable (Figure 4.6). The down regulation of MVP in liver and muscles is suggestive of protein degrading as a starvation response to mobilize amino
acids. In addition, transcript level changes of *MVP* in response to several other experimental or physiological conditions have also been analyzed. The fold expression of *MVP* was determined by comparing the extracted gene expression measurements for the samples involved. A few of the significant or interesting patterns obtained are plotted in Figure 4.7.
Figure 4.6 Changes in transcript profile of MVP expression across various tissues in response to fasting

(A) Differential expression of MVP during the indicated time points in response to fasting is indicated as log2 ratio. A log2 ratio of zero indicates no change in expression while a log2 ratio of 1 represents a 2-fold change with respect to control. (B) The rank order of expression measurements across the indicated time points for the various tissues during fasting. The percentile measurement is indicative of the expression of the gene with respect to other genes. A higher percentile ranks the gene high in terms of expression. Data obtained from (Hakvoort et al. 2011).
Figure 4.7 Expression of MVP across various transcriptomic profiles in the GEO database of NCBI

The experimental details of the various datasets are given below in legend. The fold expression was determined by comparing the averaged expression measurements between two samples. ‘A/B’ for various experimental conditions listed in the legend (below) refers to average signal count of sample A divided by average signal count of sample B.

Legend for Figure 4.7

<table>
<thead>
<tr>
<th>GEO Profile</th>
<th>Experimental/Physiological Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset 1</td>
<td>Mouse maternal mRNA utilization Embryo / Oocyte 1-cell</td>
<td>(Potireddy et al. 2006)</td>
</tr>
<tr>
<td>Dataset 2</td>
<td>B-lymphoblastoid cell line autophagy after 24 hours Starvation-induced autophagy / Control</td>
<td>(Dengjel et al. 2005)</td>
</tr>
<tr>
<td>Dataset 3</td>
<td>Hepatitis C virus (HCV) core protein effect on hepatocytes: Infection / Control</td>
<td>(Nguyen et al. 2006)</td>
</tr>
<tr>
<td>Dataset 4</td>
<td>Selective degradation of transcripts for oocyte maturation: Immature germinal vesicle stage / metaphase II stage (mature)</td>
<td>(Su et al. 2007)</td>
</tr>
<tr>
<td>Dataset 5</td>
<td>Human dermal endothelial cell response to herpesvirus: Control / Kaposi sarcoma-associated herpesvirus (KSHV)</td>
<td>(Hong et al. 2004)</td>
</tr>
<tr>
<td>Dataset 6</td>
<td>Effect of ketogenic diet on liver: Control / Ketogenic Diet</td>
<td>(Kennedy et al. 2007)</td>
</tr>
<tr>
<td>Dataset 7</td>
<td>Skeletal myoblast differentiation to myotubes Myotube / Myoblast</td>
<td>(Chen et al. 2006)</td>
</tr>
<tr>
<td>Dataset 8</td>
<td>Effect of dietary supplement on liver: Control / Liver</td>
<td>(Kiela et al. 2005)</td>
</tr>
<tr>
<td>Dataset 9</td>
<td>Myotube starvation model of atrophy: Control / Starved</td>
<td>(Stevenson et al. 2005)</td>
</tr>
<tr>
<td>Dataset 10</td>
<td>Dietary effects on hepatic and hippocampal gene expression: Liver / Hippocampus</td>
<td>(Berger et al. 2002)</td>
</tr>
</tbody>
</table>
In addition, a large number of published vault experiments were re-examined to determine whether any observations would falsify the proposed function as a nutrient amino acid sequestering and storage particle that undergoes regulated synthesis-turnover cycles. High expression of vaults in rapidly proliferating and metabolically active tumor or regenerating cells, unusually high concentrations of vault particles in sea urchin oocytes and in mammalian oocytes and embryos, and their observed depletion throughout embryogenesis are observations that are readily compatible with the proposed nutrient absorption function for vaults (Sugawara et al. 1997; Rao et al. 2009; Yoshinari et al. 2009; Sutovsky et al. 2005; Stewart et al. 2005).
4.3 DISCUSSION

As originally noted by Rome, vault appears in all highly autophagic mammalian tissues (Kedersha et al. 1990). Autophagic recycling of amino acids is a well-established essential cellular function required for nutrient processing, and for surviving a number of conditions including starvation, muscle wasting, pathogenic infection, inflammatory bowel disease, neurodegeneration and cancer (Mizushima et al. 2008). Normal rat liver cells show 20-40% increase in protein content after a daily meal, which thereafter is released through lysosome-based autophagy back into the blood in a diurnal cycle (Mortimore and Pösö 1987). Protists including Dictyostelium rely on phagocytosis and autophagy to digest and recycle essential amino acids, and perhaps not coincidentally, the only filamentous cyanobacterium with MVP also relies on amino acid recycling to compensate for a genomic deficiency in nitrogen fixation (Otto et al. 2003; Jones et al. 2011). Based on vault expression patterns it could be concluded that vaults are preferentially distributed in tissues and organisms with a requirement for high protein turnover to support amino acid recycling. Hence, it appears likely that vault particles probably compensate for certain deficiencies in amino acid synthesis during periods of starvation, and probably this was the original selective pressure for the evolutionary origin of the vault particle.

In many studies where vaults were reported to be highly expressed at the transcript or protein level, an increase in turnover rate of vaults was also observed. This is a paradox corresponding to high Transcription, Translation and Turnover. Vaults are known to be relatively stable structures with an apparent half-life of about 3 days (Zheng et al. 2005). However, in response to
specific stimuli including interferon-gamma induction or accumulation following axonal crush, vault particles have been reported to display reduced stability (Steiner et al. 2006; Li et al. 1999). While, interferon-gamma induced the expression of vault by threefold at the transcript and by six- to eleven-fold at the protein level, pulse-chase experiments following interferon-gamma treatment revealed that the labeled methionine remained higher at 12th hour than at the 24th hour, pointing to a reduced stability of vault particles and hence, increased turnover (Steiner et al. 2006).

In the case of axons, though a bulk of vaults were reported to be accumulated at the nerve terminals along with synaptic vesicles by anterograde transport, more than half of them were suggested to be degraded as only a few are involved in retrograde transport towards the cell body (Li et al. 1999). Intriguingly, vaults displayed an accelerated accumulation at the nerve terminal while the accumulation of synaptic vesicles, the store house of neurotransmitters decelerated. An increased turnover following accumulation accentuates that vaults are bound to release their amino acids at the site of degradation. Given that one vault complex is a massive store of amino acids, the turnover of vaults at specific sites may prove beneficial to the cell. As mentioned earlier, vaults are enriched in amino acids Glu (8760/vault), Gln (5808/vault) and Asp (5241/vault) that serve as prime neurotransmitters and the degradation of vault is bound to be accompanied by a concomitant increase in useful amino neurotransmitter or neurotransmitter precursors. These neurotransmitters can later be loaded into the existing synaptic vesicle via neurotransmitter transporters. Of note, in the PC12 cell line, MVP and
secretory organelles like synaptic vesicles demonstrate co-localization at the developing neurites (Herrmann et al. 1999).

Recent transcriptome profiling identified MVP to be up regulated in both larvae and in the adult during Zebrafish fin regeneration (Yoshinari et al. 2009). Regeneration is a complex process that necessitates various coordinated cell events including wound closure by epithelial cells and formation of wound epidermis followed by formation of blastema, a mass of proliferating cells that makes up for the lost or damaged parts. (Yoshinari and Kawakami 2011). While Zebrafish finfold regeneration reported 2.7 fold elevated levels of MVP in wound epidermis and blastema, a proteomic profiling data of adult urodele limb regeneration reported reduced protein levels immediately following amputation. Interestingly, the protein levels came back to normal once the regeneration process was completed. (Yoshinari et al. 2009; Rao et al. 2009). The two independent datasets are suggestive of an increased transcription and increased turnover of vaults, consistent with the paradox mentioned previously. Current literature data point to an indispensable role for vaults in regeneration as MVP-knockdown resulted in compromised locomotor functions and reduced growth of axons following spinal cord injury in Zebrafish (Pan et al. 2013). Given the indispensable role of MVP during regeneration, the proposed role of vault as a nutrient particle may be prudently implicated in such a process.

The accumulation and turnover function may also prove advantageous during embryogenesis as degradation of maternally derived proteins has been known to supply nutrients to the developing embryo. The fact that MVP is accumulated in poor quality oocytes and embryos and also that such an
accumulation could be triggered in the presence of proteasomal inhibition in developing zygotes heightens the current argument that vaults could be effectively turned over to provide for valuable amino acids.

MVP is strategically located at a chromosomal region, the deletion or duplication of which has been implicated in various neurodegenerative disorders including Schizophrenia and Autism and also energy imbalance (Guha et al. 2013; Zufferey et al. 2012). Upregulation of *MVP* has also been reported in other neurological conditions like frontal lobe epilepsy (Liu et al. 2011). About 1% of patients with ASD have displayed microdeletions of about 27 genes in this region and hence, these deletions are regarded as moderate risk factors for ASD. Recently a genomic study has narrowed on a critical deletion region of 5 genes that contributes to autism disorders (Crepel et al. 2011). Intriguingly, *MVP* is one among the 5 identified genes along with *CDIPT1*, *SEZ6L2*, *ASPHD1* and *KCTD13* that are syntenically linked. The *SEZ6l2* (seizure related 6 homolog-like 2), like the *MVP* is also overexpressed in lung cancers and is regarded as a prognostic marker.

Defects in functioning of the syntenically linked gene mentioned earlier, *BCKDK*, is also found to be the underlying cause for a rare form of autism (Novarino et al. 2012). The symptoms of this particular form of autism, arising from significant low levels of plasma and brain BCAA, could be completely abolished within one week of nutrient supplementation with BCAA enriched diet. Since amino acids serve as important precursors for neurotransmitters and given the accumulation of *MVP* in axons and nerve terminals, it is reasonable to suggest that vaults are important for brain function, with a more pronounced effect during specific cellular conditions.
including stress or starvation. The evolutionarily conserved gene order at this particular chromosomal location and its implications in various neurodegenerative disorders and energy imbalance possibly hints at a controlled gene regulation mechanism that could be active during early phases of development.

Thus, from the theoretical analysis of the vault particle in terms of its energy equivalents and from revisiting the huge amount of evidence reported in literature, it seems very likely that vaults could function efficiently in sequestering and recycling amino acids under appropriate cellular conditions.
Chapter 5

Proposed Roles of Vault through Evolution

Describing one cellular function for vault that is consistent with all experimental evidence established thus far has proven to be complicated. The proposed synthesis-turnover based nutrient absorption function for vaults seems to fit well with their observed high expression patterns in various metabolically active cells and also provides credible reasoning as to why vaults display selective accumulation and high turnover rates in response to specific stimuli.

In this section, a cellular model has been described that puts the various roles of vaults in light of the proposed novel function (Figure 5.1). Experimental evidence on the functions of vault relating to autophagy, protein turnover, essential amino acid transport, interferon-gamma induced immune response and signal transduction in axons have been described through an evolutionary perspective to cumulatively sketch out the functions of vaults.
5.1 Starve the Invader – Save the Cell

The earliest bacterial and archaeal ancestors of eukaryotes that harbored the ancestral proteasome possessed core metabolic pathways. Later, eukaryotes evolved to include features like the diversification of membrane trafficking and lysosome-based autophagy, reorganization of protein synthesis, marked by complexation of aminoacyl-tRNA synthetases and enlarging of the ribosome. Early large eukaryotic cells may have been prone to intracellular invasion from viruses and bacteria. In some cases these invaders may have become endosymbionts, as in the case of the chloroplast. In other cases, the development of an innate immune system to guard against these invaders could have provided selective advantages. A simple mechanism whereby the host removes free nutrient amino acids from the cytoplasm by increasing its protein synthesis could serve as an effective deterrent against invading bacteria. Nutrient starvation as an effective mechanism against infections has already been described for tryptophan (Kane et al. 1999; Leonhardt et al. 2007). The polymerization of amino acids into a particle like vaults could have effectively served to limit the concentration of amino acids in large cells and at the same time store the precious amino acids in a non-functional but structurally stable protein. Thus vaults could have evolved as effective host mechanism against intracellular invaders. The later evolutionary inclusion of vRNA could have provided a similar mechanism to limit the concentration of free ribonucleotides, with the exception of A, for ATP dependent functions. This could be effective in starving RNA viruses of free ribonucleotides.

5.2 Establish Amino Acid Gradients Within Cells

The loss of essential amino acid biosynthesis pathways for Ile, Val, Leu, Phe, Trp, Met, Thr, His appears to have occurred prior to the eukaryotic appearance of vault. However, it is not possible to make a phylogenetic analysis
of lost genes for a direct comparison. Most of the essential amino acids including the important BCAA set (Leu, Val and Ile) transit through exchangers into the cell. Therefore, cellular intake of essential amino acids follows a gradient established by external and internal amino acid concentrations (Hyde et al. 2003; Mortimore and Pösö 1987; Bröer 2008). Maintenance of intracellular amino acid concentrations higher than that of extracellular environment depends on active membrane transport mechanisms.

Primarily relying on amino acid exchangers, how does the cell effectively maintain a gradient for a constant supply of free essential amino acids?

Amino acid exchangers such as System L function as a 1:1 amino acid exchanger and couple the uptake of essential amino acids with efflux of other neutral amino acids like glutamine. Because efflux of a neutral amino acid is necessary for an uptake, these exchangers rely on activity of secondary active transporters to maintain a continuous supply of neutral amino acids in the cell. Most essential amino acids are indispensable for the normal functioning of the cell. This stresses on the need for a judicious mechanism to retain them within cell membranes for use when they are insufficiently supplemented through food intake. Intracellular protein synthesis can alter the extracellular to intracellular amino acid gradient and hence it might be reasonable to speculate that some specific proteins may have emerged to take on a passive role as storage proteins. By evolving to achieve high rates of synthesis and precisely controlled mechanisms for turnover, such proteins could play a more active role in amino sequestration and release during various cellular conditions. It is possible that vaults may have originated to serve this function in a unicellular ancestor, and later evolved as efficient nutrient supplements for zygotes beginning with the first multicellular animals.
5.3 MEDIATE IMMUNE COMBAT

In metazoan tissue, regulation of vault genes and the establishment of interferon-gamma induced expression may have offered finer regulation of vault expression as required during normal development or while under attack from bacterial or viral invaders. A cruder multi-copy strategy for MVP may have served this purpose in the non-bilaterian deuterostomes. The later establishment of vRNA and TEP1 may have been responsible for additional nutrient starvation of intracellular viral invaders (Nandy et al. 2009). This could effectively reduce the cytoplasmic concentrations of free ribonucleotides, especially C, G and U. It is known that interferon-gamma results in high expression rates of the MVP gene, both at the transcript and protein level. Apart from the effect on vault, interferon-gamma based upregulation of tryptophanyl-tRNA synthetase and indole-2,3-dioxygenase could also trigger additional nutrient starvation responses involving antimicrobial toxins derived from Trp (Schroecksnadel et al. 2012; Wood et al. 2004; Narui et al. 2009). Interferon-gamma inducible Nitric Oxide Synthases (iNOS) offer further antimicrobial effects from NO (nitric oxide) derived from Arg (Bronte and Zanovello 2005). Vaults being enriched in Arg could very well serve as a dependable reservoir for the NOS systems. MVP-knockout mice suffer from poor survival rate due to increased bacterial load and decreased ability to clear Pseudomonas aeruginosa during lung infection (Kowalski et al. 2007). Apart from regulating the immune response, sequestering of amino acids into vaults may simply help in maintaining low intracellular amino acid and nucleotide concentrations that could effectively control the growth of invaders. Hence vault may play an important role in innate immunity through intracellular pathogen starvation.
5.4 A RELIABLE STORE OF AMINO ACID-BASED NEUROTRANSMITTERS

The abundance of vault in neuronal tissue, including the glial cells, its anterograde and retrograde axonal transport and its distribution proximity to neurosecretory organelles also fit the proposed novel function for vaults (Li et al. 1999; Herrmann et al. 1996; Chugani et al. 1991). Vaults have been found to move along individual microtubules and are also highly expressed in presynaptic and postsynaptic structures (Paspalas et al. 2009). It has been known that within nerve terminals, more than half of the vaults that accumulate along with synaptic vesicles and mitochondria are degraded (Li et al. 1999). It may be speculated that amino acids, Glu, Asp and Gln, could be delivered to axon terminals via vault particles to stock or replenish vesicle bound neurotransmitter stores while other amino acids like Val may help power remote mitochondria. A clear mechanism detailing the bulk accumulation or movement of amino acids within cells has never been put forward. The movement of vault particles by motorized transport along microtubules effectively explains the transport of amino acids to distal parts of cells without the need for coordinated mechanisms involving amino acid gradients or exchangers. These aggregation and transport mechanisms would become very important in conditions of prolonged starvation, which may explain the lack of observed vault phenotypes in consistently fed animal models. Morphological differences in size of cell bodies and axon length are noted in edycosozoan protostomes lacking vault, as well as the lack of centralized brain tissues, which are found in lophotrocozoan protostomes.
5.5 **AN ELUSIVE RESERVE OF ENERGY AND BUILDING BLOCKS**

Oocytes or embryos at various stages of development have consistently showed accumulation of vaults around lipid inclusions or membrane vesicles in cytoplasm (Sutovsky et al. 2005). An ubiquitin-proteasome dependent turnover for vaults has been suggested and vaults are found to accumulate in poor quality oocytes or embryos (Sutovsky et al. 2005). Collectively, this evidence suggests that vaults could succumb to significant turnover by the established proteasome machinery and possibly, also through autophagy, and provide amino acids to cells that most need them. The developing or regenerating cells are in a constant demand for nutrients that serve as building blocks for cell proliferation, cell specialization and overall development. Not only can vaults provide an amino acid reserve but also serve to provide important building blocks for nucleotide or new protein synthesis. This can explain why vaults are present in copy numbers as high as 10^7 in embryos (Hamill and Suprenant 1997).

Vaults have been found within the nucleus in numerous occasions. It should be noted that the nucleolus, in which vaults have been reported, also serves as an important site for ribosome biogenesis and ribosomal RNA synthesis (Cmarko et al. 2008). With vaults providing sufficient starting material to drive *de novo* synthesis of nucleotides, it is reasonable to speculate that vaults move into the nucleus to provide for nucleotide or ribosome biosynthesis. All these mechanisms may become more pronounced during high metabolic activity or during conditions of stress or starvation. The reported accumulation of vaults within nucleus during embryonic development.
or its requirement for assembling nuclear pore complexes or its observed associations with ribosomes could be explained in light of this proposed function (Vollmar et al. 2009; Hamill and Suprenant 1997).
Various reported vault functions including axonal transport along microtubules (Eichenmüller et al. 2003), vaults in the nucleus, interferon-gamma induced MVP expression (Steiner et al. 2006), vaults in Dictyostelium (Vasu and Rome 1995) and sea urchin oocytes (Hamill and Suprenant 1997) (macroautophagy), high expression of MVP and vRNA during infection (Berger et al. 2008) and proteasomal degradation of MVP (Sutovsky et al. 2005) are explained in the context of the nutrient particle hypothesis for the vault complex. Based on our analysis of metabolic turnover, the glucose, ATP, nucleotides and new proteins possibly made from recycled vault particle have also been represented. Each functional segment in the model is based on experiments and observations from the literature. The vault enriched amino acids Val (V), Leu (L), Glu (E), Gln (Q), Pro (P) and Arg (R) are indicated in red and AA denotes amino acid.
Chapter 6

Conclusions and Future Directions

This study extends the characterization of vaults, for the first time, to an ancient single-celled eukaryote Trypanosoma brucei in an attempt to track down ancestral roles for vaults. T. brucei is evolutionarily distant from the single-celled amoebzoans and other multicellular eukaryotes in which vaults have been studied so far. It is revealed that vault genes have undergone paralogous expansion in a common ancestor of kinetoplastids to give rise to three independently diverging proteins (TbMVP1-3) that display distinct subcellular localizations within the cell. Unlike in multicellular eukaryotes, where vaults are distributed uniformly throughout the cytoplasm, TbMVP1 in Trypanosoma is shown to exhibit preferential localization near the FAZ region. In Trypanosoma, this electron rich FAZ region regulates cell motility by mediating the attachment of the single flagellum to the cell body along its length. The N-terminal primary sequence of TbMVP1 seems to carry important information concerning this specific targeting, since the truncated proteins failed to exhibit selective distribution. The preferential accumulation of TbMVP1 within this region hints at roles for MVP in motility, adhesion and cell-division events.
The movement of vaults along microtubules is well documented in multicellular eukaryotes. In Trypanosoma, *TbMVP1* and *TbMVP2* are shown to associate with cytoskeletal elements emphasizing that such interactions arose early in single-celled eukaryotes. The C-terminal region of *TbMVP1* that includes the coiled-coil domain is shown to be important for cytoskeletal binding. In the case of *TbMVP1*, the cytoskeletal attachment is initiated within 3.5 hours of *TbMVP1* induction and the process of accumulation near the FAZ region is almost complete within 6.5 hours. This underscores the importance of cytoskeletal-guided movement of vaults and also points to the involvement of molecular motors to drive the process.

The knockdown of *TbMVP1* intriguingly displayed no altered growth rates under normal cultivation conditions. This suggests that *TbMVP1* is dispensable under normal conditions and may play passive roles during events pertaining to cell division or motility. However under limited-nutrient conditions, knockdown affected the growth pattern resulting in reduced cell densities. The fact that knockdown alters growth patterns during limited-nutrient condition stresses on the role of vaults in nutrient-sensing and controlling cell proliferation rates. This becomes important in a parasite that constantly alternates between the mammalian and insect hosts, where it may be subjected to different nutrient environments. The mammalian host provides the parasite with a rich nutrient milieu, while within the insect gut the parasite is subjected to severe nutrient deficit. Thus, *TbMVP1* is believed to play important roles during cell survival under nutrient stress or starvation.

Unraveling the evolutionary history of the vault genes helped identify unifying traits in all organisms harboring vault genes. The evolutionary
analysis also shed light on explaining the puzzling phylogenetic distribution of vaults. Accordingly, it is suggested that MVP genes emerged in separate heterotrophic eukaryotic clades and bacterial species by independent horizontal gene transfer events. Vaults are conspicuously missing in autotrophs including plants, algae and fungi. Intriguingly, eukaryotes and bacteria that harbor MVP have had ancestral loss of enzymes pertaining to essential amino acid biosynthesis. It appears that organisms with vaults are all heterotrophic with the exception of the non-nitrogen-fixing cyanobacteria. However, not all heterotrophic protists have vault genes. The cyanobacterium that carries MVP gene also has lost genes pertaining to nitrogen fixation and relies on its internal store of amino acids to derive energy. Given its massive size and amino acid polymerization capability, vaults could very well have originated in such an organism to compensate for amino acid needs or the loss of nitrogen fixation. The subsequent acquisition of this gene into early single-celled eukaryotes or bacterial heterotrophs may have helped compensate for the loss of essential amino acid synthesis.

The nutrient storage properties of vaults and fate of its protein composition (through catabolism and amino acid recycling into various metabolic routes) revealed interesting results. It was found that the vault amino acid composition is well suited for gluconeogenesis and nucleotide precursor formation, with one vault particle being very similar to a glycogen molecule in terms of carbohydrate equivalents after gluconeogenesis. Also, the proposed synthesis-turnover based nutrient absorption function fits well with various reported vault expression and turnover patterns published in literature and other high throughput expression data. The nutrient absorption and
retention function succinctly explains the role of vaults in innate immunity via an intracellular parasite (bacterial or viral) starvation mechanism. A high composition of amino acid precursors for Glutamate explains the axonal transport of vaults as a potential enriched source of neurotransmitter equivalents. These functional roles previously associated with vault that remain unfalsified are, in fact, well explained by considering vault complexes most simply as stable ribonucleoprotein precursor storage particles with regulated synthesis, assembly, disassembly and turnover.

The evidence presented here suggests that the connection between vault and autophagic vesicle activity may have arisen in single-celled heterotrophic eukaryotes through independent lateral transfer events. Vault may have played an important role in facilitating the emergence and radiation of multicellular heterotrophic animals by first facilitating a flux of amino acid from altruistic storage cells to active germinal tissues as in the case of Dictyostelium. This may have led to an evolutionary breakthrough whereby multicellular animals were able to evolve separate specialized digestive cells, protective cells, and glutamate receptor-based nutrient signaling which subsequently evolved into nerve cells and synapses.

If vault had originally contributed a prophylactic advantage against bacterial intracellular parasites via nutrient starvation, loss of vault or down regulation of vault would lead to increased bacterial parasite tolerance. This tolerance could lead to the development of beneficial endosymbiotic relationships so loss of vault in a common ancestor of ecdysozoan protostomes may have been complemented by a general increase in tolerance for endosymbiosis, allowing these creatures to evolve and occupy carbohydrate
based nutrient niches (e.g. termites, ants, aphids) that would not support the multicellular phyla with sufficient essential amino acids.

Based on the observations made thus far, it is suggested that a limited-nutrient environment pronounces the functions of vaults which otherwise plays subtle roles in the cell. The constantly fed knockout models failed to recapitulate any of the phenotypes established in *in vitro* experiments. This might be because *in vitro* cultures are more often serum-starved to induce cell cycle synchronization, thus triggering MVP knockout phenotypes. Future experiments centered on characterizing vault functions in a limited-nutrient environment may provide a more definitive answer with regards to its function.

With respect to *Trypanosoma*, the current study uses the procyclic forms that are adapted to survive in a limited-nutrient environment in the insect hosts. With regards to the proposed function as an ancestral reserve of amino acids, vaults may have a prominent role to play in the bloodstream in sequestering nutrient amino acids. These sequestered amino acids may help its survival in the nutrient-limited insect hosts. Future studies focusing on knockdown of TbMVP1 in the bloodstream form of *Trypanosoma* may reveal a stronger phenotype. A triple knockdown may accentuate this phenotype. Autophagy is also more pronounced in the bloodstream form and experiments that look for vault localization within autophagosomes upon induction of macroautophagy may give better insights into the functioning of vaults.

Since vaults are relatively stable and do not interfere with normal cellular functions, the potential of recombinant vaults as a drug delivery vehicle has remained a steady subject of research. With regards to the
proposed function of vaults as a nutrient absorption particle, introducing vaults into plants or other cyanobacteria that are routinely used as dietary supplements (like Spirulina), may potentially serve to increase the amino acid content of these organisms. Vaults, being enriched in nutrient amino acids including BCAA, are well suited to be included in dietary supplements. To this end, a fellow student in the Hogue laboratory has pursued the creation of transgenic strains of rice and Arabidopsis with MVP genes in the hope of enriching protein content.

In the context of the theory presented here, observed mechanisms for vault expression and degradation may deserve a fresh examination. VPARP could represent an internal regulatory sensor molecule that is triggered to disrupt the vault particle via poly-ADP-ribosylation, possibly leading to its recognition by ubiquitin ligases. This would be consistent with the mechanistic role that the PARP homologues play in disrupting nucleosomal structures during DNA repair (Schreiber et al. 2006). VPARP may be sensitive to the oxidative state of the cell or to specific nutrient concentrations. Recruitment of TEP1 within vaults may have evolved to potentially concentrate valuable ribonucleotides within vault interiors as a potential antiviral mechanism.

In conclusion, if vault is indeed an evolutionarily conserved nutrient sequestering particle, it joins the likes of glycogen, starch, and triglycerides as a metabolically and nutritionally important molecular complex that warrants further study, and there are a large number of experiments that can be done in many organisms to further explore this possibility.
Chapter 7

References

Jackson AP. 2007. Evolutionary consequences of a large duplication event in Trypanosoma brucei: chromosomes 4 and 8 are partial duplicons. BMC Genomics 8:432.

